Information and Software Technology 55 (2013) 1651-1677

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Development of Secure XML Data Warehouses with QVT

B. Vela®*, J.N. Mazén ™', C. Blanco ¢, E. Fernandez-Medina ¢, J. Trujillo®, E. Marcos ?

2 Languages and Computing Systems, Il Department, Rey Juan Carlos University, C/Tulipdn s/n, 28933 Mostoles, Madrid, Spain

b Languages and Computing Systems, Department University of Alicante, C/San Vicente s/n, 03690 Alicante, Spain

¢ Department of Mathematics, Statistics and Computer Science Facultad de Ciencias, University of Cantabria, Av. de los Castros s/n, 39071 Santander, Spain
9 Information Systems and Technologies, Department University of Castilla-La Mancha, Paseo de la Universidad, 4 — 13071 Ciudad Real, Spain

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 27 June 2012

Received in revised form 15 January 2013
Accepted 8 March 2013

Available online 20 March 2013

Context: Data warehouses are systems which integrate heterogeneous sources to support the decision
making process. Data from the Web is becoming increasingly more important as sources for these sys-
tems, which has motivated the extensive use of XML to facilitate data and metadata interchange among
heterogeneous data sources from the Web and the data warehouse. However, the business information
that data warehouses manage is highly sensitive and must, therefore, be carefully protected. Security
is thus a key issue in the design of data warehouses, regardless of the implementation technology. It is

iﬁ/{vords: important to note that the idiosyncrasy of the unstructured and semi-structured data requires particular
Data warehouse security rules that have been specifically tailored to these systems in order to permit their particularities
Security to be captured correctly. Unfortunately, although security issues have been considered in the develop-
MDA ment of traditional data warehouses, current research lacks approaches with which to consider security
QVT when the target platform is based on XML technology.

Objective: We shall focus on defining transformations to obtain a secure XML Schema from the concep-
tual multidimensional model of a data warehouse.
Method: We have first defined the rationale behind the transformation rules and how they have been
developed in natural language, and we have then established them clearly and formally by using the
QVT language. Finally, in order to validate our proposal we have carried out a case study.
Results: We have proposed an approach for the model driven development of Secure XML Data Ware-
houses, defining a set of QVT transformation rules.
Conclusion: The main benefit of our proposal is that it is possible to model security requirements together
with the conceptual model of the data warehouse during the early stages of a project, and automatically
obtain the corresponding implementation for XML.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Data Warehouse (DW) systems [1,2] provide a Multidimen-
sional (MD) [3] view of huge amounts of historical data from het-
erogeneous operational sources. These systems supply useful
information which allows decision makers to improve business
processes in organizations. The MD paradigm structures informa-
tion into facts and dimensions. A fact contains the interesting mea-
sures (fact attributes) of a business process (sales, deliveries, etc.),
whereas a dimension represents the context in which a fact is ana-

* Corresponding author. Tel.: +34 91 488 70 03; fax: +34 91 488 85 58.

E-mail addresses: belen.vela@urjc.es (B. Vela), jnmazon@dlsi.ua.es (J.N. Mazén),
Carlos.Blanco@unican.es (C. Blanco), Eduardo.FdezMedina@uclm.es (E. Fernandez-
Medina), jtrujillo@dlsi.ua.es (J. Trujillo), esperanza.marcos@urjc.es (E. Marcos).

! Jose-Norberto Mazén had developed this work during a research internship in the
University of Castilla-La Mancha, funded by the “Consejeria de Ciencia y Tecnologia of
the Junta de Comunidades de Castilla-La Mancha” and the European Social Fund
under the contract 10/38-C.

0950-5849/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.03.003

lyzed (product, customer, time, etc.) by means of hierarchically or-
ganized dimension attributes.

Traditional DW systems allow business people to acquire useful
knowledge from their organizations’ data by means of a variety of
technologies, such as OLAP or data mining. However, if richer in-
sights into the dynamics of today’s business are to be provided, it
is desirable to combine data from inside the organization with data
from the outside, thus complementing company-internal data with
value-adding information (e.g., retail prices of products sold by
competitors). The fact that the amount of data available on the
Web has been growing rapidly in the last decade signifies that
Web data are more and more useful for this purpose. Furthermore,
as is argued in [4], considering external data sources entails non-
traditional data types such as Geographic Information Systems or
data streams related to Business Process Monitoring, which will
play a crucial role in the next generation of DWs. Dealing with
these new data types therefore leads to the need for other design

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2013.03.003&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.03.003
mailto:belen.vela@urjc.es
mailto:jnmazon@dlsi.ua.es
mailto:Carlos.Blanco@unican.es
mailto:Eduardo.FdezMedina@uclm.es
mailto:jtrujillo@dlsi.ua.es
mailto:esperanza.marcos@urjc.es
http://dx.doi.org/10.1016/j.infsof.2013.03.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1652 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

and implementation approaches rather than the traditional ones
based on relational technologies, such as XML.

1.1. Motivation and starting point

The main problem with external data is that it is rather hetero-
geneous and complex.

Interestingly, the designers of DW systems have overcome the
aforementioned drawbacks by making use of XML technologies
[5-7] in different ways [8]:

e XML has ameliorated the extraction and integration of hetero-
geneous Web data in the DW (see [4]).

e XML has provided a large data exchange framework within cor-
porate information systems. Its flexibility and openness has led
to the appearance of an increasing quantity of XML data on the
Web, as outputs of e-commerce applications or simply as Web
pages. This represents an important data source for decision
support systems [8]. XML technology consequently helps to
deal with unstructured data in DW systems.

e XML is used profusely in order to increase the level of interop-
erability between different kinds of data analysis tools and the
DW [4].

e XML allows complex data to be dealt with [7].

« In some of these cases, the different MD elements (facts, dimen-
sions, measures, hierarchies and so on) that underlie the DW
should be defined by using XML [4].

In this way, using XML technologies in the context of DWs gives
us a standardized basis to make secure the sharing of information
between different applications and people. Unfortunately, in this
scenario security may be jeopardized owing to the fact that infor-
mation is shared between different applications and people.

Bearing in mind that the information managed by DWs is fre-
quently highly sensitive and sometimes refers to personal data
(protected under law in most countries), all the layers and opera-
tions of the DWs should be protected [9]. Each layer of a typical
DW architecture (data sources integration, DW repository and ac-
cess tools) has specific security concerns. For example, in the inte-
gration layer, data from heterogeneous data sources are extracted,
transformed and loaded into the DW repository. In this layer, the
main security problem is therefore to define processes that assure
the integrity in the integration of heterogeneous data sources
which usually use different security policies and configurations.

Nevertheless, the proposal presented in this paper is focused on
the development of the main layer of a DW: the repository, by
including security constraints into the models and the final imple-
mentation. Since end-users will analyze the information stored in
the DW solely achieving read operations on the repository, the
main security issue when it is being developed is to assure confi-
dentiality [9-11]. Thus, our proposal focuses on confidentiality
constraints (flexible access control mechanisms in particular)
needed to assure that end-users do not access to unauthorized
information. Our proposal includes different models for specifying
the structure of the DW within security constraints at requirement,
design and logical levels, and assisted by transformations, these
models are automatically derived from the requirement model to
the final implementation.

Security has been investigated in the context of XML but spe-
cially focused on assuring the contents of XML files. These ad-
vances are more related with the final implementation of the
DW and can be applied in the final development stages or once
the DW has been built [4]. Nevertheless, we advocate considering
confidentiality issues in the whole XML DW development process,
from an early development stage to the final implementation, in
the sense of [12-17]. In this way, security and privacy measures

should be integrated during the entire design cycle of the DW, from
the early stages of its development as another relevant require-
ment. These security requirements are thus considered in the fol-
lowing development stages, for taking into account design
decisions, signifying that much more robust and secure XML DW
will be implemented.

In our previous works we have successfully proposed a hybrid
Model Driven Architecture (MDA) [18] framework [19,20] for the
design of DWs, where the DW repository can be implemented by
using different kinds of database technologies: relational ap-
proaches store MD data by using relational database technology
(i.e. tables, columns, foreign keys and so on); approaches based
on a multidimensional database technology store data in proprie-
tary structures such as MD arrays; and XML technology can be
used to store the DW repository as XML semi-structured docu-
ments (as proposed in this paper). With regard to including secu-
rity in the design and modeling of DWSs, we have defined
security specifications on the conceptual MD model (i.e. Platform
Independent Model, PIM) [21], independently from the target log-
ical MD model [22-24]. In relation to the XML technology, this se-
cure conceptual MD data model it is used as a starting point and is
then semi-automatically? transformed into a secure XML DW, as a
logical model (i.e. Platform Specific Model, PSM), by applying Model
to Model (M2M) Transformations.

In our previous work [25] we have focused on developing a spe-
cific case study in order to define an initial set of informal guide-
lines to obtain a secure XML DW from the corresponding MD
PIM. However, M2M transformations were not formally defined
which hinders the framework from applying the guidelines in an
automatic and structured manner.

1.2. Contributions

In this paper we complement and improve our previous MDA
framework [19,20] by proposing a new approach in which security
models are embedded in and scattered throughout the high level
MD models of the DW, which are then transformed towards the fi-
nal implementation in XML according to the MDA strategy.

Our former model-driven architecture framework [19,20] is the
starting point of our approach, since it is a generic framework for
the development of data warehouses in a structured and formal
manner. However, our former framework is generic and it was
not instantiated to technologies in which the data warehouse can
be deployed such as XML. Also, our former framework only consid-
ers data requirements, and it did not include other quality-of-ser-
vice requirements such as security.

Therefore, the main improvement of our work is to provide our
former model-driven framework with a set of transformations in
order to generate automatically an XML Schema from a conceptual
MD model, whilst no additional effort is needed to maintain the le-
vel of security required.

In this paper we specifically improve our previous work by
focusing on:

1. Further refining and describing the secure MD PIM and secure
XML PSM metamodels.

2. Describing the rationale behind the transformations rules and
how they have been developed.

3. Formalizing transformation rules by using the Query/View/
Transformation (QVT) language [26] in order to apply them
automatically.

2 Although, the transformation described in this paper is executed automatically,
once we have the target secure PSM of the DW (based on XML) we need to manual
refine it to be useful for a specific tool. Therefore, our approach is said to be semi-
automatically.

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677 1653

4, Validation of the correctness of the defined QVT relations by
means of their application to different examples and to a case
study. Therefore the process of formalizing the transformation
rules into QVT relations is a refinement process in which new
constraints are included into QVT relations to achieve
correctness.

The remainder of the paper is structured as follows: after pre-
senting in Section 2 the background on our work, including an
overview of QVT and the description of the framework for the
model driven development of secure XML DW, in Section 3 we de-
fine the QVT transformations. For this purpose, first, in Sections 3.1
and 3.2, the metamodels at PIM and PSM levels have been refined
and then, in Section 3.3, the PIM will be automatically transformed
into a secure XML DW, as a PSM, by applying a set of transforma-
tion rules defined and formalized by means of a set of QVT trans-
formations. In addition, in Section 4 we shall present a case
study to show the application of a selected subset of the QVT rela-
tions defined. In Section 5 some related works are presented. Final-
ly, in Section 6, we shall put forward our main conclusions and
present our future work.

Appendix A contains the list of acronyms used in the paper and
Appendix B shows the complete XML Schema generated in the Se-
cure XML DW.

2. Background

For the sake of completeness, a brief overview of QVT is pro-
vided in this section. Afterwards, our model-driven framework
for considering security issues in the DW development is outlined.

2.1. Query/View/Transformation language

One of the most crucial issues in model-driven development is
the formal definition of transformations between models [18,27].
These formal transformations must allow models to be automati-
cally derived while ensuring semantic correctness [28,29]. They
must also be easily readable, understandable, adaptable, and main-
tainable [30]. The OMG has therefore proposed the MOF 2.0 Query/
View/Transformation (QVT) language [26], a standard approach
with which to define formal relations between MOF-compliant
models.

QVT consists of two parts:

(1) The declarative part: provides mechanisms to define
relations that must hold between the model
elements of a set of candidate models (source and
target models). A set of these relations (or
transformation rules) defines a transformation
between models.

The declarative part of QVT can be split into two layers,

according to the level of abstraction:

(a) The relational layer: provides graphical and textual
notation for a declarative specification of relations.

(b) The core layer: provides a simpler but verbose means
of defining relations.

(2) The imperative part: defines operational mappings
that extend the declarative part with imperative
implementations when it is difficult to provide a
purely declarative specification of a relation.

In this paper, we focus on the relational layer of QVT. This layer
supports the specification of relationships that must hold between
MOF models by means of a relational language. The abstract syntax
of QVT is shown in Fig. 1. The metamodel of QVT states that a

transformation
1

H TypedModel H Transformation

typedModel (0.1 [« 0.1 0.1

dependsOn transformation

extends

rule
H Domain 0.*
@ jsCheckable : null 0.* B Rule
o= isEnforceable : null domain
overrides
0.1

Fig. 1. Excerpt of the QVT relation metamodel.

transformation is composed of a set of rules. Each rule may contain
several domains. Each domain is a distinguished set of elements of
a candidate typed model (source or target model). This set of ele-
ments (denoted by a <<domain>> label) must be matched in that
model by means of patterns. A domain pattern can be considered
as a template for elements, their properties and their associations
that must be located, modified or created in a candidate model in
order to satisfy the relation. A relation between domains can be
marked as check-only (labeled as C) or as enforced (labeled as E).
When a relation is executed in the direction of a check-only do-
main, it is only checked if a valid match exists in the model that
satisfies the relationship (without modifying any model if the do-
mains do not match); whereas for a domain that is enforced, when
the domains do not match, model elements are created, deleted, or
modified in the target model in order to satisfy the relationship.
Moreover, a when clause specifies the condition under which the
relation needs to hold (i.e., it forms a precondition), while a where
clause specifies the condition that must be satisfied by all model
elements participating in the relation (i.e., it forms a post-condi-
tion). These clauses may contain arbitrary OCL (Object Constraint
Language) [31] expressions in addition to the relation invocation
expressions.

The definition of relations by using the QVT language has the
following advantages:

e QVT is a standard language.

o Relations are formally specified, and can be automatically exe-
cuted with transformation engines (e.g., SmartQVT [32], medi-
niQVT [33], or ATL [34]).

Formalizing the mappings before implementing them leads to
the detection of errors and inconsistencies in the early stages
of software development and can help to increase the quality
of both the models built and the subsequent code generated
from them. The formalization of mappings also simplifies the
development of tools that support any model driven approach.
o Sets of QVT relations can easily be integrated as transformations

within an MDA approach.

2.2. Framework for the development of secure XML DWs

We have proposed a hybrid MDA approach for the design of
DWs (see Fig. 2) by (i) firstly specifying users’ requirements [35]
in a Computation Independent Model (CIM), (ii) obtaining a con-
ceptual model as an implementation-independent and expressive

1654 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

USER
REQUIREMENTS

SECURE SECURE l
CIM INITIAL PIM

& 1

DATA SOURCES

> %

RECONCILING '
PROCESS >

SECURE ,
RELATIONAL CoDE
PSM
SECURE
HYBRID PIM

-

SECURE
XML PSM

Fig. 2. Hybrid development approach for Secure XML DW.

conceptual MD model for the DW (i.e. a PIM) [36], (iii) reconciling
data sources with PIM models [36], (iv) obtaining a logical and a
technology-dependent model (i.e. PSM) from the previously de-
fined conceptual MD model [36], and, finally, (v) obtaining the cor-
responding code in order to implement the DW on a concrete
platform.

In [25], we extended the hybrid MDA architecture for secure
MD modeling of DWs (previously defined in [19]) in order to be
able to deal with XML (see shadowed part of Fig. 2). More specifi-
cally, a requirements analysis stage [21] and the available data
sources [21] are used to define security specifications on the con-
ceptual MD model (secure hybrid PIM), independently of the target
logical MD model. A set of guidelines should be applied to this se-
cure conceptual data model in order to obtain a secure XML DW, as
a logical model (secure XML PSM). In this paper, we have further
refined the metamodels and defined a set of Model to Model
(M2M) Transformations, based on the previously defined informal
guidelines, in order to increase the degree of automation.

3. Using QVT for the automatic generation of secure XML DWs

Our QVT transformations have been developed by bearing in
consideration our previous MDA framework for the development
of a secure XML DW (see Fig. 2). Consequently, before being able
to define our transformations, it is necessary to perform the follow-
ing tasks:

o Refining metamodels at the PIM level: the secure multidimen-
sional model is created without considering the selected tech-
nology, since this model is independent of the platform. This
MD PIM (described in more detail in the following subsection)
is represented through an extended class diagram designed
for DWs which additionally allows the specification of security
constraints over the model.

Refining metamodels at the PSM level: the data logical design is
performed, taking into account the selected target platform on
which the DW will be implemented. In our case, XML technol-
ogy will be used for the implementation of the DW in any
secure commercial database management system (e.g. Oracle
XML DB 11g). We will start from the secure MD PIM obtained
at the previous level and will apply the M2M mappings summa-
rized in Section 3.3 to obtain an XML Schema, conforming to the
XML Schema Metamodel [37] (see Section 3.2).

3.1. Secure MD PIM

As previously mentioned, our proposed development approach
starts from the conceptual model of the secure MD PIM.

This secure MD PIM has been defined by developing a secure
UML profile called SECDW (for more details, see [38]). SECDW
(Fig. 3) uses an Access Control and Audit (ACA) model [39] to con-
sider both DW specific modeling aspects (such as facts, dimen-
sions, base classes, measures, hierarchies, many-to-many
relations, degenerated dimensions, multiple classifications or
alternative paths of hierarchies) and security capabilities.

The ACA model classifies authorization subjects and objects into
security roles (“SRole” metaclass) which organize users into a hier-
archical role structure according to the responsibilities of each type
of work, levels (“SLevel” metaclass) which indicate the user’s clear-
ance level, and compartments (“SCompartment” metaclass) which
classify users into a set of horizontal compartments or groups.

The definition of several kinds of security rules related to the
multidimensional elements of DWs is also permitted: sensitive
information assignment rules (SIAR) (“SecurityRule” metaclass)
which specify multilevel security policies and allow sensitive infor-
mation to be defined for each element in the multidimensional
model; authorization rules (AUR) (“AuthorizationRule” metaclass)
which permit or deny access to certain objects by defining the sub-
ject that the rule applies to, the object that the authorization refers
to, the action that the rule refers to and the sign describing
whether the rule permits or denies access; and audit rules (AR)
(“AuditRule” metaclass) which ensure that authorized users do
not misuse their privileges.

3.2. Secure XML DW PSM

We propose the use of an XML Schema to represent the PSM le-
vel of a Secure XML DW. In this paper, we use one of the most fre-
quently employed graphical representations of the XML Schema to
present the metamodel of our Secure XML DW PSM, which in-
cludes both the MD and the security aspects. The discontinuous
line of the classes indicates that the class is optional.

This XML Schema is presented in Fig. 4 with the root XML Ele-
ment SecureMDXML. Its XML subelements include the Security Lev-
els, the Security Roles Hierarchy, Security Compartments, along with
the User Profile and the Secure Star Package.

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

1655

I |

+ownedMember

{Classl

SCompartment SRole SLevel

Package
/\
<<stereotype>>
SecurePackage
+ownedSeclnf: Securelnformation

+name: String +name: String

+name: String @
+child +root
0.

+ownedSeclnf

;+infLeveI

<<stereotype>>

<<stereotype>>

<'—|

<<stereotype>>
SecureDW

]

UserProfile

+ownedSeclnf
<<stereotype>>

SecureClass
+attributes: Set(SecureProperty)

Securelnformation
+securityLevel: SLevel
+securityRoles: Set(SRole)
+securityCompartments: Set(SCompartment)

+classes: Set(SecureClass) Property [<] <<stereotype>> |1 *
+SLevels: Set (SLevel) | | SBase

+SRoles: Set (SRole) stereotype stereotype stereotype 1.7 1.
+SCompartments: Set (SCompartment) SetureP:fp::rty == SFa();: > ;Bimert'lygi(::\ T h "

+ownedSeclinf:

Securelnformation

[Consvam}<—

<

+isTime
; 1.%

SConstraint
+involvedClasses: Set(Class)

L | L

+ownedSPObjects: Set(SecureProperty)
+ownedSCObijects: Set(SecureClass)

<<stereotype>>
SecurityRule

<<stereotype>>
AuthorizationRule

<<stereotype>>
AuditRule

+CAELSES

+CABEXxp: String
+CATHENSecInf: Securelnformation

+ownedSeclnf: Securelnformation

+ExceptSign: String = {+,-}
+ExceptPrivilege: Privilege
+CABEXxp: String

+ownedSeclnf: Securelnformation

+logType: AccessAttempt
+loglInfos: set(LoglInfo)

ecinf: Securelnformation

! SecurityCompartments

Fig. 3. Conceptual Secure MD Metamodel.

= UPAtribute |

-

te !
S
0.®

UPSecuritylnformation

Fig. 4. Secure XML DW PSM-Metamodel.

1656

-
SecureStarPackage_Type

2 T

1.@

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

g

~ Dimension

l

: I

|

: |

= |

|

o l

' ' [

l

|

l

|

,SecureDimension[EI—E-)E!— e [
= |
I

|

l

|

|

o l

! l
= |
l

- FRet_ |

|

: l

1.0

Ref_Base

-4 Ref_Bases E-:

Fig. 5. Secure XML DW PSM-Secure Star Package.

The XML Element UPSecuritylnformation will be represented
with an XML sequence complexType, which includes the Security
Level, Security Role/s and Security Compartment/s, all of whose
attributes are represented as XML subelements.

Fig. 5 shows the XML Element SecureStarPackage. It includes
Secure Base, Secure Fact and Secure Dimension XML subelements.
These three subelements can appear several times within a Secure
Star Package but at least one (Secure) Fact and one (Secure) Dimen-
sion Elements must appear. The Secure Facts, Dimensions and
Bases can, if necessary, include the corresponding Security Infor-
mation and Security Constraints as XML subelements. The Secure
Attributes correspond to the class attributes defined by the de-
signer and each of them can include optionally Secure Information.

Fig. 6 shows the part of the XML Schema Metamodel corre-
sponding to the Security Constraints. Each Secure Constraint
XML Element includes its attributes (involvedObjects, ownedSPOb-
jects, ownedSCObjects) and is of a specific type (choice complex-
Type): Security Rule, Audit Rule or Authorization Rule.

3.3. PIM to PSM transformations

In the same way that methodologies for relational or object-
relational DBs or XML DBs [40] propose particular rules for the
transformation of a conceptual schema into a logical schema, in
this section we propose the mappings from the secure MD PIM

to the XML Schema for the Secure XML DW. Once the PIM and
the PSM are defined within an MDA approach, the most challeng-
ing task is to develop a set of formal transformations that can be
used to derive a PSM from a PIM in an automatic manner. The ob-
tained PSM has to be manually refined for deployment in a specific
tool. We have therefore first described the mappings informally to
then formalize them by using the declarative approach of QVT,
since it provides a graphical notation that allows us to specify
model transformations, which are easily readable, understandable,
adaptable and maintainable. Actually, our definition of correct QVT
relations is a refinement process that can be summarized as
follows:

o First, we have developed a set of guidelines to transform our
Secure MD PIM into a Secure XML PSM.

e Second, several toy examples (incrementally done) have been
carried out in order to validate the target of our informal trans-
formation process, thus checking if the generated PSM corre-
sponds to a PSM manually designed by a DW expert. Some
initial QVT relations are defined at this point, and the required
constraints for achieving the examples successfully are incre-
mentally added to them (by means of when and where clauses).

o Finally, we have used our approach in a real-world case study to
check the correctness of the transformation process according
to the requirements of end-users.

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677 1657

(2 sttributes

SecureConstraint []

,AuthorizationRule =]

Fig. 6. Secure XML DW PSM-Secure Constraints.

According to the QVT relations language, we have therefore for-
mally specified our mappings to obtain a transformation between a
Secure MD PIM (source model) and a Secure XML PSM (target
model).

Fig. 7 shows an overview of every designed QVT relation, and
the dependencies among them. Each relation has been referenced
by means of the modeling elements that it maps. Each relation de-
pends on many others to complete the overall mapping. QVT also
allows us to specify which relations are the entry points to start
the transformation process by means of identifying them as a top
relation type. Hence, during the transformation process, each top
relation calls its depending non-top to complete the remaining
mappings involved. Each non-top relation also calls the depending
non-top relations in a recursive manner. It is worth noting that in
this paper we focus on the QVT relations that are related to the
security capabilities of the source metamodel (the non-secure part
of the metamodel was previously considered in [20]).

For the sake of understandability, QVT relations are explained
by taking into account their dependencies. This section has there-
fore been structured as follows:

Transformation of the SecureDW: the complete MD PIM will be
transformed into an XML Schema which will include the root Ele-
ment SecureMDXML.

Transformation of the Security Levels, Roles and Compartments:
the Security Levels, Roles Hierarchy, and Compartments conceptu-
ally defined for a DW in the PIM will be transformed into their cor-
responding XML Elements.

Transformation of the User Profile: subjects are classified in the
PIM by using a user profile which defines the information to be

stored for each user. It will be transformed into several XML
Elements.

Transformation of the Secure Information: the Secure Information
defined at the conceptual level for each specific element of the DW
(e.g. Secure Fact, Dimension or Base), will be transformed into its
corresponding XML Elements.

Transformation of the Secure Star Package: each Secure Star Pack-
age of the MD PIM will be transformed into an XML Element.

Transformation of the Secure Facts: each Secure Fact will be
transformed into an XML Element.

Transformation of the Secure Dimensions: each Secure Dimension
will be transformed into an XML Element.

Transformation of the Secure Bases: each Secure Base of a hierar-
chy defined in the MD PIM will be transformed into an XML
Element.

Transformation of the Secure Constraints: Security Constraints are
at two different levels: PIM and PSM. Therefore, it is first necessary
to specify the security constraints at a PIM level with the OCL lan-
guage and to then transform them into XPath expressions, which
are supported by most XML Database Management Systems (both
native and XML-enabled).

3.3.1. Transformation of the SecureDW

When a Secure XML PSM is derived from the Secure MD PIM
(SecureDW), the starting point is the creation of a “SecureMDXML”
root Element of “SecureMDXML_Type” within the XML Schema.
This will include the Security Levels, Security Roles Hierarchy,
Security Compartments, User Profile and Secure Star Package. This
has been done by developing a QVT transformation rule:
SecureDW2SecureMDXML (see Fig. 8).

1658

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

<<top>>SecureDWZSecureMDXML

‘\

SRoles2SRolesXML

SCompartments2SCompartmentsXML

UserProfileProperties2Elements

SDescriptor2SDescriptorXML Lot

.

DimensionBaseAssociationZIDREF,/

SRole2Element

SFactAttribute2SFactAttributeXML

SBimensionZSDimensionXML

/
/
/

UserProfile2UserProfileXML

/

1 SCompartment2Element ' ;

| BaseBaseAssociation2IDREFS

FactDimensionAssociation2IDREFS

Fig. 7. Dependency Graph of the QVT relations implementing the mappings.

This QVT transformation rule matches a “SecureDW” element in
the data source in order to enforce the following set of elements in
the target model: a “Schema” with an “Element” named “Secure-
MDXML” of the complexType “SecureMDXML_Type”. This com-
plexType contains a sequence element “Sequence” with five
“Element” classes, namely esl (corresponding to “SecurityLevels”
and with the complex type “SecurityLevels_Type”), esr (corre-
sponding to “SecurityRoles” and with the complex type “Security-
Roles_Type”), esc (corresponding to “SecurityCompartments” and
with the complex type “SecurityCompartments_Type”), eup (cor-
responding to “UserProfile” and with the complex type “UserPro-
file_Type”), and esp (corresponding to “SStarPackage” and with
the complex type “SStarPackage_Type”). A “Sequence” is created
for each of these elements in which the SLevels, SRoles, SCompart-
ments, and the counterparts of the UserProfile and the SStarPack-

age will be created by executing the QVT rules called in the
where clause.

3.3.2. Transformation of the Security Levels, Roles and Compartments

The Security Levels Hierarchy defined for a specific MD PIM is
transformed, by using the previously defined QVT rule (see
Fig. 8), into an XML Element called “SecurityLevels” including a se-
quence complexType (“SecurityLevels_Type”). Each of the Security
Levels defined is then transformed into subelements of that com-
plexType with a sequence. They will all contain the following attri-
butes: SLname (name of the Security Level) and ordernumber (1
being the highest security level). The SLevels2SLevelsXML QVT
relation (shown in Fig. 9) matches a SLevel in the source model (to-
gether with a SecureDW class) to create an “Element” in the target
model. Its name will be the same as the original SLevel and the or-
der number will be calculated by the function defined in the where
clause.

The Security Roles Hierarchy defined for a DW in the conceptual
model is transformed into an XML Element called “SecurityRoles”
including a sequence complexType (“SecurityRole_Type”) with all
the defined Security Roles as subelements denominated as the

Security Roles. Each subelement will contain the name and a refer-
ence Element to its parent (fatherRole attribute), i.e., the security
role in which it is included. After applying the SecureDW2Secure-
MDXML QVT relation, a new QVT relation named SRole2SRoleXML
(shown in Fig. 10) is executed to match a SRole class in the MD PIM
and this is transformed into an “Element” whose name is the name
of the SRole. The father role is obtained from the function defined
in the where clause.

The set of Security Compartments defined for an MD PIM in the
conceptual model will be transformed into an XML Element called
“SecurityCompartments”, including a sequence complexType
(“SecurityCompartments_Type”) with all the defined Security
Compartments as subelements, denominated as the Security Com-
partment. A QVT relation is defined to create the SecurityCompart-
ments in the MD PIM, thus creating an “Element” with the same

name in the target model: the SCompartments2SCo-
mpartmentsXML (see Fig. 11).

3.3.3. Transformation of the User Profile

The User Profile class is transformed into an XML Element of a
complexType “UserProfile_Type”, including a sequence element,
by using the SecureDW2SecureMDXML QVT (see Fig. 8). Different
subelements must now be included: its code, the name, the specific
class attributes and the “SecInf’ XML subelement of the complex-
Type “Securelnformation_Type”, which contains the three security
attributes as XML subelements named SecurityLevel, SecurityRoles
and SecurityCompartments. A QVT relation has been defined to
carry out this mapping: UserProfile2UserProfileXML. A QVT rela-
tion UserProfileProperties2Elements is called in the where clause
in order to deal with the properties that may have the UserProfile
class. This QVT relation is not described since non-security capabil-
ities are not within the scope of this paper.

3.3.4. Transformation of the Secure Information
We have developed a set of QVT relations in order to deal with
security information, regardless of the kind of SecureClass, as fol-

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677 1659
SecureDW2SecureMDXML
<<domain>>
: Element
name="SecureMDXML"
type="SecureMDXML_Type"
<<domain>> MD XML X
sdw: SecureDW ""'C'C>"E“"’ : ComplexType
type="SecureMDXML_Type"
esl: Element esr: Element esc: Element
name="SecurityLevels" name="SecurityRoles" name="SecurityCompartments"
: ComplexType : ComplexType : ComplexType
name="SecurityLevels_Type" name="SecurityRoles_Type" name="SecurityCompartments_Type"
ssl: Sequence I | ssr: Sequence | I ssc: Sequence
eup: Element esp: Element
name="UserProfile" name="SStarPackage"
: ComplexType : ComplexType
name="UserProfile_Type" name="SStarPackage_Type"
| ssu: Sequence | | sss: Sequence
where
Slevels2SLevelsXML(sdw,ssl);
SRoles2SRolesXML(sdw,ssr);
SCompartments2SCompartmentsXML(sdw,ssc);
UserProfile2UserProfileXML(sdw,ssu);
SStarPackage2SStarPackageXML(sdw,sss);
Fig. 8. Transforming SecureDW into an XML Schema.
SlLevels2SLevelsXML SRoles2SRolesXML
<<domain>> <<domain>> <'<S(ej;<)::1raellg\7v> <<domain>>
* : Sequence [iSecashiil | [: sequence
MD XML i XML
e E c E
. sr: SRole
sl: SLevel esl: Element esr: Element
= name=n_sr
name=n_sl| SLname=n_sl = name=n_sr
ordernumber=order(sl) fatherrole=father(sr)
where where
order(sl) = if sl.supLevel.size=0 then 1 father(sr) = if sr.root.size=0 then null
else else
order(sl.supLevel)+1 sr.root
endif endif
Fig. 9. Transforming Security Levels into an XML Element. Fig. 10. Transforming Security Roles into an XML Element.
lows: if a SecureClass has an association with a Securelnformation “SecurelnformationType” according to the Securelnforma-

class in the Secure MD PIM, then the Securelnformation2Secure-
InformationXML QVT relation is executed to create the required
security information in the Secure MD XML PSM.

The “Securelnformation” class, which contains three security
attributes (SecurityLevel, SecurityRole and SecurityCompartment)
is associated with a specific element of the Secure MD PIM (e.g. Se-
cure Fact, Dimension or Base). It will be transformed into an XML
Element called “Secure Information”, including a complexType

tion2SecurelnformationXML with a sequence element “Sequence”.

This sequence may include three subelements depending on the
class matched in the source model together with the Securelnfor-
mation class:

e “SecurityLevel” of “SecurityLevel_Type” with the corresponding
attributes as XML subelements by means of SLevel2Element
QVT relation.

1660 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

SCompartments2SCompartmentsXML SFact2SFactXML
<<domain>> <<domain>> <<domain>>
: SecureDW : Sequence
| : Sequence
MD XML
waci MLLD > esp: Element
sc: SCompartment € = " "
: P e_sc: Element _ name="SecureFacts
name=n_sc <<domain>>
name=n_sc : SStarPackage : ComplexType
name="SecureFacts_Type"
sf: SFact
Fig. 11. Transforming Security Compartments into an XML Element. name=n_sf MD C>XM|_
- E
e “SecurityRole” of “SecurityRoles_Type” with the corresponding : Element
attributes as XML subelements by using SRole2ElementQVT si: Securelnformation name=n_sf

relation.

e “SecurityCompartment” of “SecurityCompartments_Type” with
the corresponding attributes as XML subelements by using
SCompartment2Element QVT relation.

3.3.5. Transformation of the Secure Star Package

Each Secure Star Package is transformed into an XML Element
called “SStarPackage” within the “SecureMDXML” XML Element,
including a complexType “SStarPackage_Type” with a sequence
according to the aforementioned QVT relation SecureDW2Secure-
MDXML. This sequence will contain the Fact, Dimension and Base
XML subelements, each of which will contain the corresponding
Security Information and Security Constraints as XML subele-
ments. In the where clause of the SStarPackage2SStarPackageXML
relation, several QVT relations are executed to match the different
MD elements in the source model and create their counterparts in
the target model. These QVT relations are explained in the follow-
ing subsections.

3.3.6. Transformation of the Secure Facts

The SFact2SFactXML QVT relation (see Fig. 12) considers a SFact
class that is included in a SecureStarPackage, together with its Se-
cure Information (Securelnformation class). Once these elements
have been matched in the source model, a set of elements is cre-
ated in the target model. Each Secure Fact will be transformed into
an XML subelement with the same name as its PIM counterpart
(n_sf) and included in the XML Element “SecureFacts” of XML com-
plexType “SecureFacts_Type” of the Secure Star Package. The
subelement, corresponding to each of the facts includes a complex-
Type with a sequence (sa) in order to store the (secure) Fact attri-
butes as XML subelements and an ID attribute denominated the
fact + “_ID” (so that the element can be referenced by other ele-
ments by means of an IDREF/S Element). This mapping has been
completed with the implementation of several QVT relations,
which are called in the where clause in order to obtain the fact
attributes, the security constraints, the security information associ-
ated with this Secure Fact, and the IDREFS from this Fact to the
Dimensions. It is worth noting that one of the parameters of the
SFactAttribute2SFactAttributeXML QVT rule is the name of the Fact
which is used as a prefix to the names of each of its fact attributes.

The SFactAttribute2 SFactAttributeXML QVT relation matches
each secure fact attribute (with its Secure Information), and a pre-
fix is added to the name of the XML Element that represents the se-
cure fact attribute in the PSM (n_e). The value of n_e is determined
in the where clause.

Once matched, a set of classes are created in the PSM. It is worth
noting that the secure information is dealt with by calling the
Securelnformation2SecurelnformationXML QVT relation shown in
the where clause of the QVT relation.

The FactDimensionAssociation2IDREF has been defined in order
to create an XML Element in the Fact element to refer the
Dimensions.

: ComplexType

name=n_sf+"_ID'
Ltype="xs:ID" |

where

SFactAttribute2Element(sf,n_sf,sa);
SecurityRule2Element(sf,sa);
AuditRule2Element(sf,sa);
AuthoritationRule2Element(sf,sa);
Securelnformation2SecureInformationXML(si,sa);
FactDimensionAssociation2IDREFS(sf,sa);

Fig. 12. Transforming Secure Fact into an XML Complex Type.

The QVT relations associated to the Security Constraints will be
detailed in the following Section 3.3.9.

3.3.7. Transformation of the Secure Dimensions

The SDimension2SDimensionXML QVT relation (see Fig. 13)
considers a SDimension class that is included in the SecureStar-
Package, together with its Secure Information (Securelnformation
class). Once these elements have been matched in the source mod-
el, a set of elements are created in the target model. Each Secure
Dimension will be transformed into an XML subelement which
has the same name as its PIM counterpart (n_sd) and is included
in the XML Element “SecureDimensions” of the XML complexType
“SecureDimensions_Type” of the Secure Star Package. The subele-
ment corresponding to the specific dimension includes a complex-
Type with a sequence (sa) in order to store the (secure) Dimension
attributes as XML subelements and an ID attribute denominated as
the dimension + “_ID” (so that the element can be referenced by
other elements by means of an IDREF/S Element). Several QVT rela-
tions have been implemented to carry out this mapping, which are
called in the where clause in order to obtain the dimension attri-
butes, the security constraints, the security information associated
with this Secure Dimension and the IDREF from this Dimension to
the Base. The SDescritor2SDesriptorXML is also called in the where
clause in order to create the Secure Descriptor classes in the corre-
sponding Secure Base class. However, since this QVT rule is quite
similar to the SDimensionAttribute2SDimensionAttributeXML, it
is not shown in this paper.

Finally, it is worth noting that one of the parameters of the SDi-
mensionAttribute2DimensionAttributeXML rule is the name of the
Dimension which is used as a prefix to the names of each of its
dimension attributes.

The SDimensionAttribute2SDimensionAttributeXML QVT rela-
tion matches each secure dimension attribute (with its Secure
Information) that belongs to the Dimension to enforce an XML Ele-
ment that represents the secure Dimension attribute in the PSM
(e_sd) whose name is calculated in the where clause by adding a

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677 1661

SDimension2SDimensionXML

<<domain>>

: Sequence

esp: Element

name="SecureDimensions

: ComplexType

<<domain>>

: SStarPackage

name="SecureDimensions_Type"

: Sequence

sd: SDimension

name=n_sd : Element
= MD XML
®oeeed e > name=n_sd
c E
si: SecureInformation | : ComplexType
l sa: Sequence | e_id: Attribute

name=n_sd+"ID"

—ye:ID"
where type="xs:ID

SDimensionAttribute2SDimensionAttributeXML(sd,n_sd,sa);
SDescriptor2SDescriptorXML(sd,n_sd,sa);
SecurityRule2Element(sd,sa);

AuditRule2Element(sd,sa);
AuthoritationRule2Element(sd,sa);
SecureInformation2SecureInformationXML(si,sa);
DimensionBaseAssociation2IDREF(sd,sa);

Fig. 13. Transforming Secure Dimension into XML Secure Dimension.

prefix. Once matched, a set of classes are created in the PSM. It is
worth noting that the secure information is dealt with by calling
the Securelnformation2Securelnformation XML QVT relation
shown in the where clause.

The DimensionBaseAssociation2IDREF has been defined in or-
der to create an XML Element in the Dimension element to refer
the first Base in the dimension hierarchy.

The QVT relations associated to the Security Constraints will be
detailed in the following Section 3.3.9.

3.3.8. Transformation of the Secure Bases

The SBase2SBaseXML QVT relation considers a SBase class that
is included in the SecureStarPackage, together with its secure
information (Securelnformation class). Once these elements have
been matched in the source model, a set of elements are created
in the target model. Each Secure Base will be transformed into an
XML subelement which has the same name as its PIM counterpart
(n_sb) and is included in the XML Element “SecureBases” of XML
complexType “SecureBases_Type” of the Secure Star Package. The
subelement corresponding to the specific base includes a complex-
Type with a sequence (sa) in order to store the (secure) Base attri-
butes as XML subelements and an ID attribute denominated as the
base + “_ID” (so that the element can be referenced by other ele-
ments by means of an IDREF/S Element).

This mapping has been carried out by implementing three QVT
relations, which are called in the where clause in order to obtain
the dimension attributes, the descriptor attributes (although this
rule has not yet been not described in the paper because it is sim-
ilar to the SDimensionAttribute2SDimensionAttributeXML rule),
the security constraints, the security information associated with
this Secure Base and the IDREFS element to reference other Bases.

It is worth noting that one of the parameters of the SDimension-
Attribute2DimensionAttributeXML rule is the name of the Base
(n_sb) which is used as a prefix to the names of each of its dimen-

sion attributes in the SDimensionAttribute2SDimension-
AttributeXML relation.

This element is related to a complexType that contains an
IDREFS Element and a sequence (sa) in order to store the (secure)
Dimension attributes as XML subelements and an IDREFS Element
to reference other Bases of the hierarchy.

The SDimensionAttribute2SDimensionAttributeXML QVT rela-
tion matches each secure dimension attribute (with its Secure
Information) that belongs to a Base to enforce an XML “Element”
that represents the secure Dimension attribute in the PSM (e_sb)
whose name is determined in the where clause by adding a prefix
to the name of the source dimension attribute. Once matched, a set
of classes are created in the PSM. It is worth noting that the secure
information is dealt with by calling the Securelnformation2Secure-
InformationXML QVT relation shown in the where clause.

The BaseBaseAssociation2IDREFS has been defined in order to
create an XML tag in the Base element to refer the other Bases in
the dimension hierarchy. After applying this rule, the Secure Base
XML Element will include an IDREFS Element that references the
associated Bases.

3.3.9. Transformation of the Secure Constraints

The Secure Constraints contain three optional attributes:
involvedClases, ownedSPObjects and ownedSCObjects. Each Secure
Constraint will be transformed into an XML subelement of the cor-
responding constraint, with the three optional attributes as op-
tional string type subelements (involvedObjects,
ownedSPObjects, ownedSCObjects), with references to the ele-
ments, secure properties or secure elements.

Various Secure Constraints have been considered in accordance
with the Secure MD PIM:

e Transforming the Audit Rule Constraints: an Audit Rule is a
Secure Constraint that will be transformed as an XML subele-
ment of the corresponding Secure Base, Dimension or Fact Ele-
ment, denominated as the Audit Rule at the PIM level. This
element is of the complexType “AuditRule_Type” and can con-
tain the three aforementioned XML subelements and the fol-
lowing two subelements: logType and loginfos, both of which
are string types, with the same value as their PIM counterpart.

e Transforming the Authorization Rules Constraints: an Authori-
zation Rule is a Secure Constraint that will be transformed as
an XML subelement of the corresponding Secure Base, Dimen-
sion or Fact Element, denominated as the Authorization Rule
at PIM level. This element is of a complexType “Authorization-
Rule_Type” and can contain the three aforementioned subele-
ments and the following subelements: the ExceptSign, of
SimpleType with an enumeration constraint and the fixed value
{+,-}, ExceptPrivilege also of SimpleType with an enumeration
constraint with fixed value {read, write}, and the CabExp. It con-
tains the Authorization Rule Condition, which is a string type,
that will contain the XPath expression associated with the
OCL expression.

e Transforming the Security Rules Constraints: a Security Rule is a
Secure Constraint that will be transformed as an XML subele-
ment of the corresponding Secure Base, Dimension or Fact Ele-
ment, denominated as the Security Rule at the PIM level. This
element is of a complexType “SecurityRule_Type” and can con-
tain the three aforementioned subelements and the following
subelements: CABExp, which will contain a string with the
expression in XPATH.”; the CABTHEN, which will contain the
Security Information if the expression (in XPath) is TRUE; and
the CABELSE subelement, which will contain the Security Infor-
mation if the expression is FALSE.

1662 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

4. Case study

In this section, we will briefly give some details about the exam-
ples and the real-world case study we used for designing our QVT
transformation. Then, a case study is used to show how our previ-
ously defined QVT relations are properly applied to obtain the Se-
cure XML DW (PSM) from the secure conceptual MD data model
(PIM).

Two examples were used for refining the QVT relations. The first
one is related to the management of a pharmacies consortium
business as stated in [22], and the second one is based on a DW
for the security department of an Airport (it will be described in
this section). Both case studies are toy examples with data sources
containing a range from 10 to 20 tables, and a range from 100 to
200 instances. In these toy examples the average number of mea-
sures by table is around 0.5.

Importantly, our approach is being validated in the context of a
project in which we are involved in the development of a DW for a
Chilean university [41]: Universidad de La Frontera (UNIVFRON-
TERA1-09I). This project focused on developing a DW for a higher
education institution. Therefore, in order to know the require-
ments of the project, the Business Strategic Plan 2006-2010 of
the University of La Frontera® were considered.

Personnel from the “Direccién de Andlisis y Desarrollo Instituc-
ional de la Universidad de La Frontera™, which is the office in
charge of the business strategic plan of the University of La Frontera.
These meetings and interviews were very valuable for discussing the
aforementioned documentation in order to determine the concep-
tual models and the security constraints. At the end we have one
model per strategic axis. Then, we focused on designing a data mart
for personnel, having data sources with 183 tables and an average of
instances per table of 21350.89. The average number of measures
per table was 1.4590164.

This project has provided us with a lot of knowledge about the
required constraints for moving from the informal rules to the QVT
transformation, thus allowing us to check its correctness.

For the sake of understandability, in this paper, we present a
simplified case study based on an airport security department to
show the benefits of our proposal.

Our case study is inspired by both, (i) security departments sta-
ted in airports, such as the Airport Security Unit at the Hong Kong
International Airport® or the Airport Police Service in airports of
Ireland®; and (ii) security departments of airports that belong to
an upper department, such as the Department for Transport in UK’
or the Federal Aviation Administration in the USA2. The main goal
of these security departments is to prevent harm to aircraft, passen-
gers and crew, as well as support national security and counter-ter-
rorism policy. To this aim they need managing information about
trips, flights, departure and arrival places and dates, passengers
and baggage. Furthermore, sensitive information collected in the
passport control, such as the fingerprints, must be also considered.
Due to the fact that large amount of people pass through airports
every day, a secure DW must be designed to store and manage this
huge amount of data. Moreover, as the security department of an
Airport manages external data from heterogeneous sources, we have
chosen XML as the DW repository technology.

3 http://analisis.ufro.cl/index.php?option=com_content&view=article&id=49&
Itemid=54.

4 http://analisis.ufro.cl.

5 http://www.hongkongairport.com/eng/passenger/departure/all/airport-
security.html.

6 http://www.dublinairport.com/gns/at-the-airport/airport-security.aspx.

7 http://www.dft.gov.uk/.

8 http://www.faa.gov/.

4.1. MD data model

Fig. 14 shows the secure conceptual multidimensional model
(PIM) used in this case study, which is focused on trips. A Secure
Star Package with a central fact for trips (“Trip” secure fact class)
has therefore been defined, which is related to dimensions for pas-
sengers, baggage, flights, departure and arrival places and dates
(“Passenger”, “Baggage”, “Flight”, “Place” and “Date” secure
dimension classes). The secure fact class “Trip” includes attributes
with trip information regarding price, purpose (which can be
“tourist”, “business” or “military”), seat, distance, flight time, and
whether or not the check-in and boarding procedures have been
carried out.

The secure dimension class “Passenger” includes attributes
containing personal information about passengers (code, name
and address) and extended security information, such as fin-
gerprint, passport photo, criminal record, whether the passen-
ger is considered to be suspicious, and his/her estimated risk
index (a number from 1 to 10). The secure dimension class
“Baggage” has several attributes containing information about
the number of baggage items, identification codes, weight,
whether the baggage has been inspected and whether it is
suspicious.

The other secure dimensions classes (“Place”, “Date” and
“Flight”) only include identification attributes. These dimensions
are also related to secure base classes, forming navigation hierar-
chies which allow the information to be aggregated in different
levels. For instance, the “Place” dimension is related to “Gate”,
“Terminal” and “Airport” base classes and represents a hierarchy
which allows the information to be aggregated by gate, terminal
and airport. The “Date” dimension can be similarly aggregated by
hours, days, months and years, and the “Flight” dimension by
planes, aircraft types and companies.

Our access control and audit model permits a three point of
view security classification by using security levels (“Security Lev-
els”, SL) with the users’ clearance levels; a hierarchical structure of
security roles (“Security Roles”, SR); and a set of horizontal security
compartments or groups (“Security Compartments”, SC). Fig. 15
shows the security configuration used in this case study: the levels
of security (SL) used are top secret (TS), secret (S), confidential (C)
and undefined (U); the hierarchy of security roles (SR) has a main
system user “User” specialized into “Passenger” and airport “Staff”
which is composed of “Security”, “Flight” and “Administration”
(specialized into “Boarding” and “Baggaging”) roles; and the secu-
rity compartments are different airlines (companies A, B and C).
The “UserProfile” class (Fig. 14) contains information about all
the users who will have access to the system, with their user char-
acteristics (user code and name) and an associated security profile
(an instance of security information composed of a security level,
roles and compartments).

A set of security rules has additionally been defined over some
classes and attributes by using stereotypes (Fig. 14). These are Sen-
sitive Information Assignment Rules (SIAR) which establish the
security privileges needed to access certain information. The se-
cure fact class “Trip” has a SIAR associated with it, indicating that
it can be accessed by users with a confidential (or higher) security
level (stereotype “SL=C” in “Trip” fact class). The “Passenger”
dimension could similarly be accessed by users with a secret (or
higher) security level (SL=S); and the “Baggage” dimension by a
confidential (or higher) security level (SL=C) and “Security” or
“Baggaging” security roles (SR = Security, Baggaging). Several attri-
butes also have fine grain security constraints which permit users
with a security role of “Security” to access the attributes “purpose”
(in the “Trip” fact class) and “fingerprint”, “passportPhoto”, “crim-
inalRecord”, “suspicious” and ‘“riskIndex” (in the “Passenger”
dimension class).

http://analisis.ufro.cl/index.php?option=com_content&view=article&id=49&Itemid=54
http://analisis.ufro.cl/index.php?option=com_content&view=article&id=49&Itemid=54
http://analisis.ufro.cl
http://www.hongkongairport.com/eng/passenger/departure/all/airport-security.html
http://www.hongkongairport.com/eng/passenger/departure/all/airport-security.html
http://www.dublinairport.com/gns/at-the-airport/airport-security.aspx
http://www.dft.gov.uk/
http://www.faa.gov/

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677 1663
+departurePlace
<<SFact>> P <<SDimension>> <<SBase>> <<SBase>> <<SBase>>
Trip . Place Gate Terminal Airport
(SL=C} +arrivalPlace - -
+placeCode +gateCode +terminalCode +airportCode
+price +gateName +terminalName +airportName
+purpose {SR=Security} +departureDate
+seat
+distance +arrivalDate <<SDimension>> | | <<SBase>> <<SBase>> | | <<SBase>> | | <<SBase>>
+flightTime Date Hour Day Month Year
+check]n +flightID +dateCode +hourCode +dayCode +monthCode +yearCode
+boarding +hour +dayNumber +month
+departurePIace +dayOfTheWeek
+arrivalPlace
+departureDate <<SDimension>>
+a.rr|vaIDate Flight <<SBase>> <<SBase>> <<SBase>>
+ilightD i Plane AircraftType Compan
+baggagelD +flightCode — yp pany
+passengeriD +planeCode +aircraftTypeCode +companyCode
+passengerlD +planeName +aircraftTypeName
D <<SDimension>> +seating
tbaggage Passenger +maximunCargo
<<SDimension>> {SL=S} +flightRange
(SLC: SR 2399_‘{‘9?3 ng) +passengerCode
=C; SR=Security, Baggagin K

¥, 5ag9ading +name <<Securelnformation>>
+baggageCode +e}ddres§ . <<UserProfiles>> Secinf
+handBaggage +fingerprint {SR=Security} UserProfile vLevel
+numberOfltems +passportPhoto {SR=Security} +secur!tyRe\|/e
+totalWeight +criminalRecord {SR=Security} +userCode +userSeclnf | €U yCo es
+inspected +suspicious {SR=Security} +userName +securityCompartments
+suspicious +riskindex {SR=Security}

Fig. 14. PIM model for Airport case study.

Security Levels Security Roles

Security Compartments

Top Secret (TS) Company|Company|Company
Secret (S) | Staff Passenger | A B C
Confidential (C)
Undefined (V) | I

I Security II Administration

Flight |

I_I_I

| Boarding |

| Baggaging |

Fig. 15. Security Configuration for Airport case study.

More complex security (SIAR), authorization (AUR) and audit
(AR) rules have also been defined by using the “SecurityRule”,
“AuthorizationRule” and “AuditRule” metaclasses (Fig. 16). The
“SIAR_TripPurpose” rule is associated with the “Trip” fact class
and involves “Passenger” and “Flight” dimension classes. This rule
increases the security requirements for the fact class and the clas-
ses involved if the purpose of the trip is “military” (“purpose” attri-
bute). In this case, a security level of “Secret” and a security role of
“Security” will be required (expressed as Security Information in
the “CATHENSecInf” attribute of the security rule).

The other SIAR rules (“SIAR_PassengerSuspicious” and
“SIAR_BaggageSuspicious”) are associated with the “Passenger”
and “Baggage” dimension classes, and if the established conditions
are satisfied then the security requirements needed to access them
also increase (i.e., the security level and role required). The
“SIAR_BaggageSuspicious” rule checks whether the baggage is sus-
picious and, if so, increases the security requirements to a “Secret”
security level and a “Security” security role, whereas the
“SIAR_PassengerSuspected” rule also checks the risk index of the
passenger, and if it is more than “5” then a security level of “Top
Secret” and a security role of “Security” is required to access the
information.

Two authorization rules (AUR) have additionally been defined:
a negative authorization rule “AUR_Company” which checks the
user’s company (security compartment) and denies access to infor-
mation related to other companies (information about flights and
their related base classes “Plane”, “AircraftType” and “Company”);
and a positive authorization rule “AUR_Passenger” which checks
the user name (“name” attribute of “UserProfile”) and provides ac-
cess to his/her basic information (his/her name, address and bag-
gage identification number).

Finally, an audit rule (AR) called “AR_frustratedAttempts” logs
all the frustrated access attempts over several multidimensional
elements (“Trip” fact class, and “Passenger” and “Baggage” dimen-
sion classes). For each frustrated attempt, it stores the information
expressed by the “loginfos” attribute, which is the identification of
the object, the action achieved, the time and the response.

4.2. Sample application of QVT relations

We have used the Secure MD PIM shown in the previous sub-
section as a starting point to apply the QVT relations defined.

We have selected only some sample elements of the MD PIM
used in this case study to show how some of the QVT relations

1664 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

<<SecurityRule>> SIAR_PassengerSuspicious

+ownedSCObjects = {Passenger}

+CATHENSecInf = {SL=TS; SR=Security}
+CAELSESecInf = {SL=S}

+CABEXxp = "Passenger.suspicious=="True' && Passenger.riskindex > 5"

—
<<SDimension>>
Passenger

<<AuthorizationRule>> AUR_Passenger

+ExceptSign = +
+ExceptPrivilege = read

+ownedSPObjects = {Passenger.name, Passenger.address, Trip.baggagelD}

+CABEXxp = "UserProfile.name <> Passenger.name"

+CATHENSecInf = {SL=S; SR=Security}
+CAELSESecInf = {SL=C; SR=Security, Baggage}

<<AuthorizationRule>> AUR_Company <<SDimension>>

+ownedSCODbjects = {Flight} | Flight
+involvedClasses = {Plane, AircraftType, Company}
+ExceptSign = -
+ExceptPrivilege = read
+CABEXxp = "UserProfile.securityCompartments <> Company.companyCode"

<<SecurityRule>> SIAR_BaggageSuspicious <<SDimension>> <<SFact>>
+ownedSCObjects = {Baggage} Baggage Trip
+CABEXxp = "Baggage.suspicious=="True"

<<SecurityRule>> SIAR_TripPurpose

+ownedSCObjects = {Trip}
+involvedClasses = {Passenger, Flight}

<<AuditRule>> AR_frustratedAttempts

+CABEXxp = "Trip.purpose=="military"
+CATHENSecInf = {SL=S; SR=Security}
+CAELSESecInf = {SL=C}

+ownedSCObjects = {Trip, Passenger, Baggage}
+logType = "frustratedAttempts"
+loglnfos = "objectld" "action" "time

response”

Fig. 16. Security Rules for Airport case study.

defined are applied to obtain the corresponding part in XML of the
Secure XML DW. The complete XML Schema generated in the Se-
cure XML DW is shown in the Appendix B, where we have indi-
cated the used QVT relations by means of labels.

The application of the main transformation in our case study
begins with the application of the SecureDW2SecureMDXML rela-
tion (Fig. 8), which transforms the complete MD PIM “SecureDW”
into an XML Schema, including the root Element “SecureMDXML”
of “SecureMDXML_Type” that includes the Security Roles Hierar-
chy, Security Levels, Security Compartments, Secure Star Package
and User Profile. Fig. 17 illustrates the result of applying the
SecureDWZ2SecureMDXML.

If we continue with the QVT relations that appear in the where
clause of the SecureDW2SecureMDXML, we should now apply the
SLevels2LevelsXML, the SRoles2RolesXML, the SCompart-
ments2SCompartmentsXML, the UserProfile2UserProfileXML and
the SStarPackage2SStarPackageXML relations. Next, we shall there-
fore focus solely on the most representativ of these relations, since
the others will be applied in a similar way (see Appendix B).

The SStarPackage2SStarPackageXML relation will be applied to
transform the Secure Star Packages of the MD PIM into the XML
DW. In our case study, since no Secure StarPackage appears in
the Secure MD PIM, we have assumed that there is only one. This
will be transformed into the complexType SStarPackage_Type,
which contains a sequence with the Secure Facts, Secure Dimen-
sions and Secure Bases XML subelements. In order to generate
these subelements, the SFact2FactXML, SDimension2Dimension-
XML and SBase2BaseXML relations should be applied in the where
clause of the QVT relation.

We shall now show how the SFact2FactXML relation is applied
for the facts of the Secure Star Package (see Fig. 12). The SDimen-
sion2DimensionXML and SBase2BaseXML relations will be ap-
plied in the same way to transform the Dimensions and Bases of

the Secure Star Package. According to the SFact2FactXML relation,
the Secure Fact Class Trip, like the other the Secure Fact classes, will
be transformed into an XML subelement of the sequence of
“SecureFacts_Type” complexType included in the XML Element Se-
cure StarPackage. Each Secure Fact Element will include a com-
plexType with a sequence which includes all the attributes
corresponding to the Secure Fact Class, along with an ID attribute.
The element can therefore be referenced by other elements by
means of an IDREF/S Element.

If we continue with the QVT relations that appear in the where
clause of the SFact2FactXML, we should now apply the SFactAttrib-
ute2Element, SecurityRule2Element, AuditRule2Element, Authori-
zationRule2Element, Securelnformation2SecurelnformationXML
and FactDimensionAssociation2IDREFS relations (the other QVT
relations not related to security aspects are not with the scope of
this paper).

The SFactAttribute2SFactAttributeXML relation will be applied
if Secure Class Attributes are included in the Secure Fact class. They
will be transformed by including an XML subelement called “Sec-
ureAttribute” in the sequence of the complexType that contains
the other properties of the Secure Fact Class. We shall show how
the Secure Attribute purpose will be transformed by applying the
SFactAttribute2SFactAttributeXML (the other Secure Class Attri-
butes will be transformed in the same way). The “SecureAttribute”
Element includes a complexType sequence with the secure class
attribute Trip_purpose (note that the name of the attribute takes
the name of the fact, Trip, as its prefix according to the where
clause of the SFactAttribute2SFactAttributeXML relation) and the
corresponding Secure Information properties as XML subelements,
which appear in the where clause of the QVT relation.

The next QVT relation that will be applied is the Security-
Rule2Element relation to generate the security rules associated
with the Secure Fact Class Trip, in this case, the SIAR_TripPurpose.

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677

Security Compartments Security Roles

Company| Company| Company
A B C

Security Levels Passenger
Top Secret (TS) [T]
Secret (S) | Security | | Administration| | Flight |
Confidential (C)
Undefined (U) | Boarding | | Baggaging]
d e
<<SFact>> <<SDi B - B —] -
Trip Place Gate Terminal Airport
= e
{St=C) +placeCode +gateCode +terminalCode +airportCode
+price +gateName +terminalName +airportName
spurpose (SR=Security} [, o0 enate —_—
+seat
+distance <<SDimension>> | | <<SBase>> <<SBase>> <<SBase>> | | <<SBase>>
+flightTime +amivalDate Date Hour Day M Month Year
+checkin +flightlD +dateCode +hourCode +dayCode +monthCode | [+yearCode
*boarding +hour +dayNumber +month
+dayOfTheWeek
<<SDimension>>
Flight <<SBase>> | | <<SBase>> | | <<SBase>>
+flightCode — Plane AlrcraftType Company
+passengqriD +planeCode +aircraftType Code +companyCode
<<SDimension>> baggagelD +planeName +aircraftTypeName
P +seating
’(‘S‘L.:g?" “55';:2"!::“” +maximunCargo
TpassengerCode (SL=C; SR=Securily, B 2figniRange
+name
+address :xgg;g;g:;: <<Securelnformation>>
+ingerprint {SR=Security} +numberOfitems c<UserProfile>> Secinf
+passportPhoto {SR=Secunty} +totalWeight UserProfile +securityLevel
:c;:mmall»?ecirg-{?mSecumy) +inspected +userCode +userSecinf| *securityRoles
spicious {SR=Security} +suspicious +userName +securityComparnments
+riskindex {SR=Security}

SecureDW2SecureMDXML

v

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<xs:complexType name="SecurityRoles_Type"> ... </xs:complexType>
<xs:complexType name="SecurityLevels_Type"> ... </xs:complexType>
<xs:complexType name="SecurityCompartments_Type"> ...</xs:complexType>
<xs:complexType name="SStarPackage_Type">
<xs:sequence>
<xs:element name="SecureFacts" type="SecureFacts_Type" minOccurs="0"/>
<xs:element name="SecureDimensions" type="SecureDimensions_Type"
minOccurs="0"/>
<xs:element name="SecureBases" type="SecureBases_Type" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="UserProfile_Type"> ... </xs:complexType>
<xs:complexType name="SecureMDXML_Type">
<xs:sequence>
<xs:element name="SecurityRoles" type="SecurityRoles_Type" minOccurs="0"/>
<xs:element name="SecurityLevels" type="SecurityLevels_Type" minOccurs="0"/>
<xs:element name="SecurityCompartments" type="SecurityCompartments_Type"
minOccurs="0"/>
<xs:element name="SStarPackage" type="SStarPackage_Type"/>
<xs:element name="UserProfile" type="UserProfile_Type"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

Fig. 17. SecureDW2SecureMDXML Transformation.

1665

1666 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

A Security Rule will be transformed as an XML subelement of the
corresponding Fact Element Trip, denominated as the Security Rule
at PIM level, SIAR_Trip_Purpose. It includes a complexType Security-
Rule_Type with the following subelements: ownedSPObjects with
the string value fixed at "Trip”; involvedClasses with the string va-
lue fixed at “Passenger, Flight”; CABExp which will contain the
expression in XPATH."Trip.purpose=="military’; the CATHEN that
will contain the Security Information if the expression (in XPath)
is TRUE (SL = "Secret” and SR = “Security”) and the CAELSE subele-
ment that will contain the Security Information if the expression is
FALSE (SL = “Confidential”).

The next QVT relation that is applied is the AuditRule2Element
relation to obtain the audit rules associated with the Secure Fact
Class Trip, in this case, the AR_frustratedAttempts. An Audit Rule will
be transformed as an XML subelement of the corresponding Secure
Base, Dimension or Fact Element, denominated as the Audit Rule at
PIM level. This subelement includes the following subelements:
ownedSCObjects with the string value fixed at="Trip, Passenger,
Baggage”, logType with the fixed value “frustratedAttempts”, and log-
Infos, also with the string value fixed at = “objectld” “action” “time”
“response”. In the Appendix B the result obtained after applying the
AuditRule2Element relation is shown.

In our case study, no Authorization Rule is specified for the Se-
cure Fact class Trip, so the AuthorizationRule2Element relation will
not be applied.

The last relation to be applied in our case study is the FactDi-
mensionAssociation2IDREFS relation, where an IDREFS Element
Ref_Dimensions is included as a subelement of the Secure Fact Ele-
ment Trip to reference the dimensions.

The application of the other QVT relations defined has been car-
ried out in the same way, in order to validate them (see Appendix
B).

5. Related work

In this section, the related work is organized according to the
following topics: (1) XML DWs modeling, (2) security integration
into the design process and (3) security and access control models
for DWs.

5.1. XML DWs modeling

Works focused on the specific modeling of XML DWs can be
found in [4]. These works provide different strategies with which
to develop an XML Data Warehouse depending on the nature of
the XML data sources. If source documents are structured, the solu-
tions are based on traditional DWs which store the XML docu-
ments, whereas XML native DWs are better at working with
semi-structured documents.

Some proposals use logical models to model systems which
consider XML files as data sources that will be transformed and
integrated into a non-XML repository. These proposals are based
on structured XML documents, which are similar to relational data
and can be modeled at the logical level with star [42] and snow-
flakes schemas [43].

Other work models and analyzes this kind of systems by taking
into account a native XML DW in which cubes and dimensions are
stored in XML documents. They define models at the conceptual le-
vel such as XFact [44] or at the logical level such as [7] or [45,46],
which define algebraic manipulation operators that provide some
OLAP analysis support. Nevertheless, the XML technology that is
applied to DWs has a lower performance when compared with tra-
ditional data warehousing systems. This issue is considered by
|47,48] or [45,46], which attempt to improve the performance by
adding OLAP functionalities to the XQuery language.

Although these proposals are interesting contributions for
developing XML DWs they are not prepared for directly including
security issues in the development process. These proposals pro-
vide us conceptual and logical models specifically created for mod-
eling the structural concepts of DWSs considering the XML
technology but they do not allow us to include security constraints
in these models. Our proposal is also focused on XML DWs permit-
ting the definition of structural elements of the DW at different
levels (requirements, conceptual and logical models), and further-
more allow us to include into the models the security constraints
needed to assure the DW.

5.2. Secure integration into the design process

Since security has been identified as an important aspect to
consider in the development of information systems, many propos-
als attempt to identify and incorporate these constraints in early
development stages [9,12,14].

UMLsec [13] uses UML to define and evaluate security specifica-
tions by employing formal semantics (labels, stereotypes, etc.). It is
an approach for security in general, including access control poli-
cies and the specification of confidentiality and integrity require-
ments. This proposal uses the majority of UML diagrams: use-
case diagrams to capture security requirements; activity diagrams
to detail security specifications from use-cases; sequence diagrams
to specify security protocols; and deployment diagrams to ensure
that security requirements are present in the physical layer
communications.

Model Driven Security (MDS) [13,49-51] uses the MDA ap-
proach to include security properties in high-level system models.
Its authors have also enriched models and model transformation
techniques with security capabilities in order to automatically gen-
erate secure system architectures. MDS has been applied to several
proposals, including UMLsec in which three abstraction levels
(requirements, modeling and code) are defined, and tools are pro-
vided to assist in the development process, re-engineering, verifi-
cation and configuration. Within the context of MDS, SecureUML
[52] is proposed as an extension of UML for modeling security as-
pects in a technology independent manner by using a generalized
role based access control.

The development methodology TROPOS [53], which is based on
i*, has also been improved to permit the modeling of security
requirements [54] by using concepts such as secure goals, secure
tasks, constraints, etc. The Unified Process has furthermore been
extended with specific security activities [55] in order to define
security requirements, design, implementation, testing, monitor-
ing and auditing. On the other hand, Mokum [56] is an active ob-
ject oriented knowledge base system for modeling which permits
the specification of security and integrity constraints, and auto-
matic code generation. We have been working on the integration
of security in the development process applied to: the develop-
ment of applications based on Web services (PWSSec process)
[57]; processes for requirements engineering (SREP) [58] and prod-
uct lines (SREPPLine) [59]; a methodology for secure databases that
covers requirements gathering, analysis, relational logical design
and specific logical design for Oracle Label Security [60]; model
driven development of secure systems from secure business pro-
cesses modeled with extensions of BPMN [61] or UML [62]. These
are relevant contributions to secure information systems develop-
ment but are not specifically focused on DWs. Our Secure MD mod-
el has been specifically developed for taking into account all the
multidimensional concepts used in a DW design and has been
complemented with an access control and audit model that allows
us to specify security constraints over these multidimensional ele-
ments. Nevertheless, in further works we have considered to ex-
tend these proposals (such as UMLsec) with the concepts needed

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677 1667

to model secure DWs and also defining transformations, providing
thus other alternatives for PIM model, such as in [22] in which an
MDA-based engineering process has been developed to consider an
extension of UML as a secure PIM [24], and its transformations to
an extension of the CWM (Common Warehouse Metamodel) [23].

5.3. Security and access control models for DWs

DWs manage sensitive information whose security must be en-
sured by including the necessary security constraints in all layers
and operations of the DW [9]. Since end-users work with a MD
model when querying a DW (facts, dimensions, classification hier-
archies, etc.), security constraints should be defined in terms of MD
modeling. There are several interesting initiatives for the inclusion
of security in DWs, but they are not conceived for their integration
into MD modeling as part of the DW design process, and inconsis-
tent security measures might consequently be defined.

Only Priebe and Pernul [63] propose a complete methodology
which allows: security requirements to be specified in an early
development stage; their modeling at the conceptual level by using
ADAPTed UML [63]; and the implementation of a secure solution in
an OLAP tool by extending the MultiDimensional eXpressions
(MDX) language. Nevertheless, this proposal focuses on a Manda-
tory Access Control (MAC) security policy and does not define
the connection between models. Other works present DW security
models but focus on a particular abstraction level. At the business
level, Paim and Castro [64], despite not offering a formal metamod-
el, include security requirements for DWs. At the conceptual level,
security aspects are only included in the modeling by ADAPTed
UML [63]. At the logical level, Katic et al. [65] present a security
model based on metadata to define user groups and views; Saltor
et al. [66] provide an architecture to integrate MAC security poli-
cies from data sources; and Rosenthal and Sciore [67] integrate
security from the data sources and propagate it to DW design.
Other proposals define authorization models and security for
DWs [68,69] but only deal with OLAP operations (such us roll-up
or drill-down).

To summarize, various interesting methodologies exist for DWs,
in addition to several contributions that combine XML and DWs in
different ways. Moreover, some proposals can be found in which
security issues have been considered in the development of tradi-
tional data warehouses. However, to the best of our knowledge,
current research lacks approaches with which to consider security
in the development of DWs when the target platform is based on
XML technology. We therefore propose a methodological approach
for the model driven development of Secure XML Data Ware-
houses, taking advantage of the benefits of applying MDA to this
kind of development.

6. Conclusions and future work

In this paper, we have proposed an approach for the model dri-
ven development of Secure XML Data Warehouses. Our approach
begins by defining the secure conceptual MD model (PIM) repre-
sented by means of the secure UML profile called SECDW, indepen-
dently of the target logical MD model. This PIM is transformed into
a secure XML DW, as a logical model (PSM), by applying Model to
Model (M2M) Transformations. The transformation described in
this paper is executed automatically. However, it is said to be
semi-automatic, since once we automatically obtain the target se-
cure PSM of the DW (based on XML) we need to manual refine it to
be useful for a specific tool.

In this work, we have focused on the specification of the trans-
formation rules that are necessary to be able to automatically gen-
erate not only the corresponding XML structure of the DW from

the secure conceptual models of the DW, but also the security rules
specified within the DW XML structure, thus allowing us to imple-
ment both aspects simultaneously. For the sake of understandabil-
ity, we have first defined the rationale behind these transformation
rules and how they have been developed in natural language, and
we have then established them clearly and formally by using the
QVT language. In order to validate our proposal we have carried
out several examples and case studies.

The great benefit of our proposal is that it is possible to model
security requirements together with the DW model in the concep-
tual model during the early stages of a DW project, and automati-
cally obtain the corresponding implementation for different target
platforms, according to different logical data models. We therefore
believe that we set the basis for future Business Intelligence plat-
forms, in which traditional DWs should be complemented with
both semi-structured and unstructured information from the Web.

We are now working on several different lines of work, in an at-
tempt to overcome some limitations we found. One of these limi-
tations is related to the security constraints expressed in textual
form, for example expressed in OCL. The automation of the trans-
formations of the OCL constraints defined at the PIM level should
be addressed, to convert them into XPATH language. Another lim-
itation to address is to validate the completeness of our approach
by conducting a set of experiments on a more complete set of case
studies, by using the case tool that we are developing for support-
ing the development of Secure XML DW.

Acknowledgements

We would like to thank the referees for their helpful comments
and suggestions that allow us to improve our research. This re-
search has been carried out in the framework of the following pro-
jects: CoMobility (TIN2012-31104) financed by the Spanish
Ministry of Economy and Competitiveness, MASAI (TIN-2011-
22617) and MESOLAP (TIN2010-14860) financed by the Spanish
Ministry of Education and Science, SISTEMAS (PII2109-0150-
3135) financed by the “Consejeria de Ciencia y Tecnologia of the
Junta de Comunidades de Castilla-La Mancha”, and BUSINESS
(PET2008-0136), financed by the Spanish Ministry of Science and
Innovation (MCI).

Appendix A. List of acronyms

ACA Access Control and Audit

ATL Atlas Transformation Language
BPMN Business Process Modeling Notation
DW Data Warehouse

M2M Model to Model

MAC Mandatory Access Control

MD Multidimensional

MDA Model Driven Architecture
MDS Model Driven Security

MDX MultiDimensional eXpressions
MOF MetaObject Facility

OCL Object Constraint Language

OLAP On-Line Analytical Processing
OMG Object Management Group
PIM Platform Independent Model
PSM Platform Specific Model

QVT Query/View/Transformation
UML Unified Modeling Language
XML Extensible Markup Language

1668

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

<?xml version="1.0" encoding="utf-8"?>
SecureDW2SecureMDXML

- >-~»

<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="SecureMDXML" type="SecureMDXML_Type"/>

<l-- Security Roles Hierarchy -->
<xs:complexType name="SecurityRoles_Type"> SRoles2SRolesXML
<xs:sequence> < - - -
<xs:element name="User" type="xs:string"/> 7
<xs:element name="Staff">
<xs:complexType>
<xs:attribute name="fatherRole" fixed="User"/>
</xs:complexType>
</xs:element>
<xs:element name="Passenger">
<xs:complexType>
<xs:attribute name="fatherRole" fixed="User"/>
</xs:complexType>
</xs:element>
<xs:element name="Security">
<xs:complexType>
<xs:attribute name="fatherRole" fixed="Staff"/>
</xs:complexType>
</xs:element>
<xs:element name="Administration">
<xs:complexType>
<xs:attribute name="fatherRole" fixed="Staff"/>
</xs:complexType>
</xs:element>
<xs:element name="Flight">
<xs:complexType>
<xs:attribute name="fatherRole" fixed="Staff"/>
</xs:complexType>
</xs:element>
<xs:element name="Boarding">
<xs:complexType>
<xs:attribute name="fatherRole" fixed="Administration"/>
</xs:complexType>
</xs:element>
<xs:element name="Baggaging">
<xs:complexType>
<xs:attribute name="fatherRole" fixed="Administration"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<l-- Security Levels: TS, S, Cand U -->
<xs:complexType name="SecurityLevels_Type"> SLevels2LevelsXML

<xs:sequence> <« - _D_ -
<xs:element name="TopSecret" fixed="TopSecret">

<xs:complexType>
<xs:attribute name="OrderNumber" type="xs:integer" fixed="1"/>
</xs:complexType>
</xs:element>
<xs:element name="Secret" fixed="Secret">
<xs:complexType>
<xs:attribute name="OrderNumber" type="xs:integer" fixed="2"/>
</xs:complexType>

Fig. B1. XML Schema Code for the Airport example.

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677

</xs:element>
<xs:element name="Confidential" fixed="Confidential">
<xs:complexType>
<xs:attribute name="OrderNumber" type="xs:integer" fixed="3"/>
</xs:complexType>
</xs:element>
<xs:element name="Undefined" fixed="Unclassified">
<xs:complexType>
<xs:attribute name="OrderNumber" type="xs:integer" fixed="4"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<!-- Security Compartments: Company A, B and C --> SCompartments2SCompartmentsXML

<xs:complexType name="SecurityCompartments_Type">
<xs:sequence>
<xs:element name="Company A" type="xs:string" fixed="Company A"/>
<xs:element name="Company B" type="xs:string" fixed="Company B"/>
<xs:element name="Company C" type="xs:string" fixed="Company C"/>
</xs:sequence>
</xs:complexType>

<!-- User Profile Transformation (Type)-->
<xs:complexType name="UserProfile_Type">

<xs:sequence> <& - _D -
<xs:element name="UserCode" type="xs:integer"/>

<xs:element name="UserName" type="xs:string"/>
<xs:element name="SeclInf">
<xs:complexType name="Securelnformation_Type">
<xs:sequence>
<xs:element name="SecurityCompartments" type="xs:string"/>
<xs:element name="SecurityRoles" type="xs:string"/>
<xs:element name="SecurityLevel" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

UserProfile2UserProfileXML

SecurityRule2Element

<!-- Security Rule Transformation: SIAR_TripPurpose --> < - —D— -
<xs:element name="SIAR_TripPurpose">
<xs:complexType name="SecurityRule_Type">
<xs:sequence>
<xs:element name="ownedSCObjects" type="xs:string" fixed="Trip"/>
<xs:element name="involvedClasses" type="xs:string" fixed=" Passenger, Flight"/>
<xs:element name="CABEXP" type="xs:string" fixed="Trip.purpose='military' "/>
<xs:element name="CABTHEN" type="xs:string" fixed="SL=S; SR=Airport Security"/>
<xs:element name="CABELSE" type="xs:string" fixed="SL=C"/>
</xs:sequence>
</xs:complexType>
</xs:element>

AuditRule2EI t
<l-- Audit Rule Transformation: AR_frustratedAttempts--> udithutecElemen
<xs:element name="AR_frustratedAttempts"> <~ - -D— -

<xs:complexType name="AuditRule_Type"> 7

<xs:sequence>
<xs:element name="ownedSCObjects" type="xs:string" fixed="Trip, Passenger, Baggage"/>
<xs:element name="logType" type="xs:string" fixed="frustratedAttempts "/>
<xs:element name="loglnfos" type="xs:string" fixed=""objectld','action','time’,'response’ "/>
</xs:sequence>
</xs:complexType>
</xs:element>

Fig. B1. (continued)

1669

1670

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

<l-- Authorization Rule Transformation: AUR_Passenger-->
<xs:element name="AUR_Passenger">
<xs:complexType name="AuthorizationRule_Type">
<xs:sequence>
<xs:element name="ownedSPObjects" type="xs:string" fixed=" Passenger.name,
Passenger.address, Trip.baggagelD "/>
<xs:element name="ExceptSign" type="xs:string" fixed="+"/>
<xs:element name="ExceptPrivilege" type="xs:string" fixed="read"/>
<xs:element name="CABEXP" type="xs:string" fixed="UserProfile.name!=Passenger.name"/>
<!l--ownedSCObjects-->
</xs:sequence>
</xs:complexType>
</xs:element>

<l-- Definition of constraints types: SecurityRule_Type, AuditRule_Type and AuthorizationRule_Type-->
<xs:complexType name="SecurityRule_Type">
<xs:sequence>
<xs:element name="CABEXP" type="xs:string"/>
<xs:element name="CABTHEN" type="xs:string"/>
<xs:element name="CABELSE" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AuditRule_Type">
<xs:sequence>
<xs:element name="logType" type="xs:string"/>
<xs:element name="logInfos" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AuthorizationRule_Type">
<xs:sequence>
<xs:element name="Sign" type="xs:string"/>
<xs:element name="Privilege" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="CABEXP" type="xs:string"/>
<xs:element name="Securelnformation" type="Securelnformation_Type" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<l-- Definition of constraints: SecurityRule, AuditRule and AuthorizationRule-->
<xs:element name="SecurityRule" type="SecurityRule_Type"/>
<xs:element name="AuditRule" type="AuditRule_Type"/>
<xs:element name="AuthorizationRule" type="AuthorizationRule_Type"/>
<l-- Transformation of Securelnformation_Type -->
<xs:complexType name="Securelnformation_Type">
<xs:sequence>
<xs:element name="SecurityLevel" minOccurs="0"/>
<xs:element name="SecurityRole" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="SecurityCompartment" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<l--Transformation of SecureFacts_Type complexType, including all the existing Secure Facts-->

<xs:complexType name="SecureFacts_Type">
<xs:sequence> SFact2SFactXML

I--Transf ti f Facts --
<l--Transformation of Secure Facts --> <« - _D_ -

<xs:element name="Trip">

<xs:complexType>
<xs:sequence>

<xs:element name="price" type="xs:string"/>
<xs:element name="seat" type="xs:string"/>
<xs:element name="distance" type="xs:string"/>
<xs:element name="flightTime" type="xs:string"/>
<xs:element name="checkIn" type="xs:string"/>
<xs:element name="boarding" type="xs:string"/>

Fig. B1. (continued)

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677

SFactAttribute2SFactAttributeXM

<xs:element name="SecureAttribute">
<xs:complexType> <& -- -=>

<xs:sequence>

<xs:element name="Trip_purpose" type="xs:string"/>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityRole" fixed="Security"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityLevel" fixed="C"/>
</xs:sequence>
</xs:complexType>
</xs:element>

FactDimensionAssociation2IDREFS

«--(»->»

<xs:element name="Ref_Dimensions" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>

v

<xs:element ref="SIAR_TripPurpose"/>
<xs:element ref="AR_frustratedAttempts"/>
</xs:sequence>
<xs:attribute name="SFact" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!--End of transformation of Secure Facts TRIP-->
</xs:sequence>
</xs:complexType>

<l--Transformation of SecureDimensions_Type complexType, including existing Secure Dimensions-->
<xs:complexType name="SecureDimensions_Type">
<xs:sequence>
<l--Transformation of Secure Dimension Place-->
<xs:element name="Place">
<xs:complexType>
<xs:sequence>
<xs:element name="placeCode" type="xs:string"/>
<xs:element name="Ref_Facts" type="xs:IDREFS" maxOccurs="unbounded"/>
<xs:element name="Ref_Base" type="xs:IDREF"/>
</xs:sequence>
<xs:attribute name="Place" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!l--Transformation of Secure Dimension Date-->
<xs:element name="Date">
<xs:complexType>
<xs:sequence>
<xs:element name="dateCode" type="xs:string"/>
<xs:element name="Ref_Facts" type="xs:IDREFS" maxOccurs="unbounded"/>
<xs:element name="Ref_Base" type="xs:IDREF"/>
</xs:sequence>
<xs:attribute name="Date" type="xs:ID" use="required"/>
</xs:complexType>

Fig. B1. (continued)

1671

1672

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

</xs:element>
<l--Transformation of Secure Dimension Flight-->
<xs:element name="Flight">
<xs:complexType>
<xs:sequence>
<xs:element name="FlightCode" type="xs:string"/>
<xs:element name="Ref_Facts" type="xs:IDREFS" maxOccurs="unbounded"/>
<xs:element name="Ref_Base" type="xs:IDREF"/>
</xs:sequence>
<xs:attribute name="Flight" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<l--Transformation of Secure Dimension Baggage-->
<xs:element name="Baggage">
<xs:complexType>
<xs:sequence>
<xs:element name="baggageCode" type="xs:string"/>
<xs:element name="handBaggage" type="xs:string"/>
<xs:element name="numberOfltems" type="xs:string"/>
<xs:element name="totalWeight" type="xs:string"/>
<xs:element name="inspected" type="xs:string"/>
<xs:element name="suspicious" type="xs:string"/>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityLevel" fixed="C"/>
<xs:element name="SecurityRole" fixed="Security"/>
<xs:element name="SecurityRole" fixed="Baggaging"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Ref_Facts" type="xs:IDREFS" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Baggage" type="xs:|D" use="required"/>
</xs:complexType>
</xs:element>
<l--Transformation of Secure Dimension Passenger-->
<xs:element name="Passenger">
<xs:complexType>
<xs:sequence>
<xs:element name="passengerCode" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="xs:string"/>
<xs:element name="fingerprint">
<xs:complexType>
<xs:sequence>
<xs:element name="fingerprint" type="xs:string"/>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityRole" fixed="Security"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="passportPhoto">
<xs:complexType>
<xs:sequence>
<xs:element name="passportPhoto" type="xs:string"/>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityRole" fixed="Security"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Fig. B1. (continued)

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="criminalRecord">
<xs:complexType>
<xs:sequence>
<xs:element name="criminalRecord" type="xs:string"/>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityRole" fixed="Security"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="suspected">
<xs:complexType>
<xs:sequence>
<xs:element name="suspected" type="xs:string"/>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityRole" fixed="Security"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="riskindex">
<xs:complexType>
<xs:sequence>
<xs:element name="riskIndex" type="xs:string"/>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityRole" fixed="Security"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Securelnformation">
<xs:complexType>
<xs:sequence>
<xs:element name="SecurityLevel" fixed="S"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element ref="SecureConstraint" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="Ref_Facts" type="xs:IDREFS" maxOccurs="unbounded"/>
<xs:element ref="AUR_Passenger"/>
</xs:sequence>
<xs:attribute name="Passenger" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<l--Transformation of SecureBases_Type complexType, including all the existing Secure Bases-->
<xs:complexType name="SecureBases_Type">
<xs:sequence>
<l--Transformation of Secure Base Gate-->
<xs:element name="Gate">
<xs:complexType>

Fig. B1. (continued)

1673

1674 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

<xs:sequence>
<xs:element name="gateCode" type="xs:string"/>
<xs:element name="gateName" type="xs:string"/>
<xs:element name="Ref_Dimension" type="xs:IDREF" minOccurs="0"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Gate" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!l--Transformation of Secure Base Terminal-->
<xs:element name="Terminal">
<xs:complexType>
<xs:sequence>
<xs:element name="terminalCode" type="xs:string"/>
<xs:element name="terminalName" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Terminal" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!l--Transformation of Secure Base Airport-->
<xs:element name="Airport">
<xs:complexType>
<xs:sequence>
<xs:element name="airportCode" type="xs:string"/>
<xs:element name="airportName" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Airport" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!--Transformation of Secure Base Hour-->
<xs:element name="Hour">
<xs:complexType>
<xs:sequence>
<xs:element name="hourCode" type="xs:string"/>
<xs:element name="hour" type="xs:string"/>
<xs:element name="Ref_Dimension" type="xs:IDREF" minOccurs="0"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Hour" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!--Transformation of Secure Base Day-->
<xs:element name="Day">
<xs:complexType>
<xs:sequence>
<xs:element name="dayCode" type="xs:string"/>
<xs:element name="dayNumber" type="xs:string"/>
<xs:element name="dayOfTheWeek" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Day" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!--Transformation of Secure Base Month-->
<xs:element name="Month">
<xs:complexType>
<xs:sequence>
<xs:element name="monthCode" type="xs:string"/>
<xs:element name="month" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>

Fig. B1. (continued)

B. Vela et al. /Information and Software Technology 55 (2013) 1651-1677

</xs:sequence>
<xs:attribute name="Month" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!--Transformation of Secure Base Year-->
<xs:element name="Year">
<xs:complexType>
<xs:sequence>
<xs:element name="yearCode" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Year" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!--Transformation of Secure Base Plane-->
<xs:element name="Plane">
<xs:complexType>
<xs:sequence>
<xs:element name="planeCode" type="xs:string"/>
<xs:element name="planeName" type="xs:string"/>
<xs:element name="seating" type="xs:string"/>
<xs:element name="maximunCargo" type="xs:string"/>
<xs:element name="flightRange" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Plane" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!l--Transformation of Secure Base AircraftType-->
<xs:element name="AircraftType">
<xs:complexType>
<xs:sequence>
<xs:element name="aircraftTypeCode" type="xs:string"/>
<xs:element name="aircraftTypeName" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="AircraftType" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
<!--Transformation of Secure Base Company-->
<xs:element name="Company">
<xs:complexType>
<xs:sequence>
<xs:element name="companyCode" type="xs:string"/>
<xs:element name="Ref_Bases" type="xs:IDREFS" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="Company" type="xs:ID" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<l--Transformation of SecureConstraints-->
<xs:element name="SecureConstraint">
<xs:complexType>
<xs:choice>
<xs:element ref="SecurityRule"/>
<xs:element ref="AuditRule"/>
<xs:element ref="AuthorizationRule"/>
</xs:choice>
<xs:attribute name="involvedObjects" type="xs:IDREFS" use="optional"/>
<xs:attribute name="ownedSPObjects" type="xs:IDREFS" use="optional"/>
<xs:attribute name="ownedSCObjects" type="xs:IDREFS" use="optional"/>
</xs:complexType>
</xs:element>

Fig. B1. (continued)

1675

1676 B. Vela et al./Information and Software Technology 55 (2013) 1651-1677

and Bases of a Starpackage-->
<xs:complexType name="StarPackage_Type">
<xs:sequence>

</xs:sequence>
</xs:complexType>

<xs:complexType name="SecureMDXML_Type">
<xs:sequence>

</xs:sequence>
</xs:complexType>
</xs:schema>

<l--Transformation of complexType: StarPackage_Type, which includes all the Secure Facts, Dimensions

<xs:element name="SecureFacts" type="SecureFacts_Type" minOccurs="0"/>
<xs:element name="SecureDimensions" type="SecureDimensions_Type" minOccurs="0"/>
<xs:element name="SecureBases" type="SecureBases_Type" minOccurs="0"/>

<l--Transformation of complexType: SecureMDXML_Type, which includes the Security Roles Hierarchy, the
Levels, Compartments, StarPackage and UserProfile of the Secure XML DW-->

<xs:element name="SecurityRoles" type="SecurityRoles_Type" minOccurs="0"/>

<xs:element name="SecurityLevels" type="SecurityLevels_Type" minOccurs="0"/>

<xs:element name="SecurityCompartments" type="SecurityCompartments_Type" minOccurs="0"/>
<xs:element name="StarPackage" type="StarPackage_Type"/>

<xs:element name="UserProfile" type="UserProfile_Type"/>

SStarPackage2SStarPackageXML

«--(»-»

SecureDW2SecureMDXML
«L--

Fig. B1. (continued)

Appendix B. Generated XML Schema code of the Secure XML DW

The complete XML Schema code generated after applying the
transformation rules is presented as follows.
See Fig. B1.

References

[1] W.H. Inmon, 2.0 - Architecture for the next generation of data warehousing,
Morgan Kaufman, 2008.

[2] W.H. Inmon, Building the Data Warehouse, Wiley, 2005.

[3] R. Kimball, L. Reeves, M. Ross, W. Thornthwaite, The Data Warehousing
Lifecycle Toolkit, John Wiley & Sons, New York, USA, 2008.

[4] F. Ravat, O. Teste, R. Tournier, G. Zurfluh, Finding an application-appropriate
model for XML data warehouses, Information Systems 35 (2010) 662-687.

[5] JM. Pérez, RB. Llavori, MJ. Aramburu, T.B. Pedersen, Integrating data
warehouses with web data: a survey, IEEE Transaction Knowledge Data
Engineering 20 (2008) 940-955.

[6] H. Mahboubi, M. Hachicha, J. Darmont, XML warehousing and OLAP, in:
Encyclopedia of Data Warehousing and Mining, second ed., IGI Publishing,
2008, pp. 2109-2116.

[7] O. Boussaid, R.B. Messaoud, R. Choquet, S. Anthoard, X-warehousing: an XML-
based approach for warehousing complex data, in: 10th East-European
Conference on Advances in Databases and Information Systems (ADBIS),
Springer Verlag, ThessalonikiGreece, 2006, pp. 39-54.

[8] M. Golfarelli, S. Rizzi, B. Vrdoljak, Data Warehouse Design from XML Source, in:
DOLAP 2001, 2001.

[9] B. Thuraisingham, M. Kantarcioglu, S. Iyer, Extended RBAC-based design and
implementation for a secure data warehouse, International Journal of Business
Intelligence and Data Mining (IJBIDM) 2 (2007) 367-382.

[10] A. Abelld, J. Samos, F. Saltor, A framework for the classification and description
of multidimensional data models, in: 12th International Conference on
Database and Expert Systems Applications (DEXA’'01), Springer-Verlag,
Munich, Germany, 2001, pp. 668-677.

[11] O. Romero, A. Abell6, A survey of multidimensional modeling methodologies,
International Journal of Data Warehousing and Mining (IJDWM) 5 (2009) 1-
23.

[12] H. Mouratidis, Software Engineering for Secure Systems: Industrial and
Research Perspectives, IGI Global, 2011.

[13] J. Jiirjens, Secure Systems Development with UML, Springer-Verlag, 2004.

[14] E. Fernindez-Medina, J. Jirjens,]. Trujillo, S. Jajodia, Model-driven
development for secure information systems, Information and Software
Technology 51 (2009) 809-814.

[15] B. Husemann, J. Lechtenborger, G. Vossen, Conceptual data warehouse design,
in: Proceedings of the 2nd. International Workshop on Design and
Management of Data Warehouses (DMDW'2000), Technical University of
Aachen (RWTH), Stockholm, Sweden, 2000, pp. 3-9.

[16] J. Jirjens, H. Schmidt, UMLsec4UML2-Adopting UMLsec to support UML2, in:
Technical Reports in Computer Science. Technische Universitat Dortmund,
2011. <http://hdl.handle.net/2003/27602>.

[17] H. Mouratidis, P. Giorgini, Integrating Security and Software Engineering:
Advances and Future Vision, IGI Global, 2006.

[18] OMG, Model Driven Architecture Guide Version 1.0.1, 2003.

[19] J.N. Mazén,]. Trujillo, A hybrid model driven development framework for the
multidimensional modeling of data warehouses, SIGMOD Record 38 (2009)
12-17.

[20] J.-N. Mazén, J. Trujillo, An MDA approach for the development of data
warehouses, Decision Support Systems 45 (2008) 41-58.

[21] J. Trujillo, E. Soler, E. Fernandez-Medina, M. Piattini, A UML 2.0 profile to define
security requirements for data warehouses, Computer Standard and Interfaces
31 (2009) 969-983.

[22]]. Trujillo, E. Soler, E. Ferndndez-Medina, M. Piattini, An engineering process for
developing secure data warehouses, Information and Software Technology 51
(2009).

[23] E. Soler,]J. Trujillo, E. Ferndndez-Medina, M. Piattini, Building a secure star
schema in data warehouses by an extension of the relational package from
CWM, Computer Standard and Interfaces 30 (2008) 341-350.

[24] E. Fernandez-Medina, J. Trujillo, R. Villarroel, M. Piattini, Developing secure
data warehouses with a UML extension, Information Systems 32 (2007) 826-
856.

[25] B. Vela, C. Blanco, E. Ferndndez-Medina, E. Marcos, A practical application of
our MDD approach for modeling secure XML data warehouses, Decision
Support Systems 52 (2012) 26.

[26] OMG, QVT. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, OMG, 2008.

[27] A.Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture:
Practice and Promise, Addison-Wesley, 2003.

[28] A. Gerber, M. Lawley, K. Raymond,]. Steel, A. Wood, Transformation: the
missing link of MDA, in: H.E. A. Corradini, H.-]. Kreowski, G. Rozenberg (Eds.),
ICGT 2002, Springer-Verlag, 2002, pp. 90-105.

[29] K. Czarnecki, S. Helsen, Classification of model transformation approaches, in:
2nd OOPSLA Workshop on Generative Techniques in the Context of the Model
Driven Architecture, Anaheim, 2003.

http://hdl.handle.net/2003/27602

B. Vela et al./Information and Software Technology 55 (2013) 1651-1677 1677

[30] S. Sendall, W. Kozaczynski, Model transformation: the heart and soul of
model-driven software development, IEEE Software 20 (2003) 42-45.

[31] OMG, OCL 2.0 Specification. Version 2.0, in: Object Management Group (OMG),
2005, pp. 185.

[32] SmartQVT, An Open Source Model Transformation Tool Implementing the
MOF 2.0 QVT-Operational Language. <http://smartqvt.elibel.tm.fr/>.

[33] mediniQVT, mediniQVT. <http://projects.ikv.de/qvt>.

[34] A. Group, ATLAS Transformation Language. <http://www.eclipse.org/m2m/atl/
>

[35] J.N. Mazén,]. Trujillo, A model-driven goal-oriented requirement engineering
approach for data warehouses, in: Advances in Conceptual Modeling -
Foundations and Applications, ER 2007 Workshops CMLSA, FP-UML, ONISW,
QolS, RIGiM, SeCoGlIS, Auckland, New Zealand, 2007, pp. 255-264.

[36] J.N. Mazén,]. Trujillo, J. Lechtenborger, Reconciling requirement-driven data
warehouses with data sources via multidimensional normal forms, Data &
Knowledge Engineering 63 (2007) 725-751.

[37] W3C, XML Schema Working Group, XML Schema Parts 0-2: Primer, Structures,
Datatypes, 2004. <http://www.w3c.org/TR>.

[38] E.Fernandez-Medina,]. Trujillo, R. Villarroel, M. Piattini, Developing secure data
warehouses with a UML extension, Information Systems 32 (2007) 826-856.

[39] E. Fernandez-Medina, J. Trujillo, R. Villarroel, M. Piattini, Access control and
audit model for the multidimensional modeling of data warehouses, Decision
Support Systems 42 (2006) 1270-1289.

[40] B. Vela, CJ. Acuifia, E. Marcos, A model driven approach for XML database
development, in: International Conference on Conceptual Modeling, Shanghai,
China, 2004, pp. 780-794.

[41] P. Hernindez, A. Castro,].N. Mazén, J. Trujillo, C. Cares, Modeling requirements
with i* in the development of a data warehouse for a university: the
UNIVFRONTERA1-091 project, in: C.U. London (Ed.), iStar Showcase’'l1,
London, 2011.

[42] D. Pedersen,]J. Pedersen, T.B. Pedersen, Integrating XML data in the
TARGITOLAP system, in: Int. Conference on Data Engineering (ICDE), IEEE
Computer Society, 2004, pp. 778-781.

[43] Y. Li, A. An, Representing UML snowflake diagram from integrating XML data
using XML schema, in: Int. Workshop on Data Engineering Issues in E-
Commerce (DEEC), IEEE Computer Society, 2005, pp. 103-111.

[44] V. Nassis, T.S. Dillon, R. Rajagopalapillai, J.W. Rahayu, An XML document
warehouse model, in: Int. Conf. on Database Systems for Advanced
Applications (DASFAA), Springer, 2006, pp. 513-529.

[45] K.S. Beyer, D.D. Chamberling, L.S. Colby, F. Ozcan, H. Pirahesh, Y. Xu, Extending
XQuery for analytics, in: ACM SIGMOD Infernational Conference on
Management of Data, Baltimore, Maryland, 2005, pp. 503-514.

[46] N. Wiwatwattana, H.V. Jagadish, L.V.S. Lakshmanan, D. Srivastava, X*3: a cube
operator for XML OLAP, in: International Conference on Data Engineering
(ICDE), Istanbul, Turkey, 2007, pp. 916-925.

[47] O. Boussaid, R.B. Messaoud, R. Choquet, S. Anthoard, X-warehousing: an XML-
based approach for warehousing complex data, in: East European Conf. on
Advances in Databases and Information Systems (ADBIS), Springer, 2006, pp.
39-54.

[48] B.-K. Park, H. Han, L-Y. Song, XML-OLAP: a multidimensional analysis
framework for XML warehouses, Data Warehousing and Knowledge
Discovery, LNCS 3589 (2005) 32-42.

[49] D. Basin, J. Doser, T. Lodderstedt, Model driven security: from UML models to
access control infrastructures, ACM Transactions on Software Engineering and
Methodology 15 (2006) 39-91.

[50] S.H. Houmb, S. Islam, E. Knauss,]. Jirjens, K. Schneider, Eliciting security
requirements and tracing them to design: an integration of Common Criteria,
Heuristics, and UMLsec Requirements Engineering 15 (2010) 30.

[51] J. Jurjens, P. Shabalin, Tools for secure systems development with UML,
International Journal on Software Tools for Technology Transfer (STTT) Archive
9 (2007) 18.

[52] R. Matulevicius, M. Dumas, Towards model transformation between
SecureUML and UMLsec for role-based access control, in: Proceeding of the
2011 Conference on Databases and Information Systems VI: Selected Papers
from the Ninth International Baltic Conference, DB&IS 2010, I0S Press,
Amsterdam, The Netherlands, The Netherlands, 2011, pp. 339-352.

[53] P. Bresciani, P. Giorgini, F. Giunchiglia,]. Mylopoulos, A. Perini, Tropos: agent-
oriented software development methodology, Journal of Autonomous Agents
and Multi-Agent System 8 (2004) 203-236.

[54] P. Giorgini, H. Mouratidis, N. Zannone, Modelling security and trust with
secure tropos, in: Integrating Security and Software Engineering: Advance and
Future Visions, Idea Group Publishing, 2006.

[55] C. Steel, R. Nagappan, R. Lai, The alchemy of security design methodology,
patterns, and reality checks, in: Core Security Patterns: Best Practices and
Strategies for J2EE, Web Services, and Identity Management, Prentice Hall,
2005, p. 1088.

[56] R.P. van de Riet, Twenty-five years of Mokum: for 25 years of data and
knowledge engineering: correctness by design in relation to MDE and correct
protocols in cyberspace, Data & Knowledge Engineering 67 (2008)
293-329.

[57] D.G. Rosado, C. Gutiérrez, E. Fernandez-Medina, M. Piattini, Security patterns
related to security requirements, in: Workshop on Security in Information
Systems (WOSIS'06) in Conjunction with ICEIS'06, INSTICC, Paphos, Cyprus,
2006, pp. 163-173.

[58] D. Mellado, E. Fernandez-Medina, M. Piattini, A common criteria based
security requirements engineering process for the development of secure
information systems, Computer Standards & Interfaces 29 (2007) 244-253.

[59] D. Mellado, E. Ferndndez-Medina, M. Piattini, Towards security requirements
management for software product lines: a security domain requirements
engineering process, Computer Standard and Interfaces 30 (2008) 361-371.

[60] E. Fernandez-Medina, M. Piattini, Designing secure databases, Information and
Software Technology 47 (2005) 463-477.

[61] A. Rodriguez, E. Fernandez-Medina, M. Piattini, A BPMN extension for the
modeling of security requirements in business processes, IEICE Transactions
on Information and Systems E90-D (2007) 745-752.

[62] A. Rodriguez, E. Fernandez-Medina, M. Piattini, An MDA approach to develop
secure business processes through a UML 2.0 extension, Computer Systems,
Science and Engineering 22 (2007) 307-319.

[63] T. Priebe, G. Pernul, A pragmatic approach to conceptual modeling of OLAP
security, in: 20th International Conference on Conceptual Modeling (ER 2001),
Springer-Verlag, Yokohama, Japan, 2001.

[64] F.R.S. Paim,]. Castro, DWARF: an approach for requirements definition and
management of data warehouse systems, in: IEEE International Conference on,
Requirements Engineering, 2003, pp. 75-84.

[65] N. Katic, G. Quirchmayr, J. Schiefer, M. Stolba, A. Min Tjoa, A prototype model
for data warehouse security based on metadata, in: 9th International
Workshop on Database and Expert Systems Applications (DEXA'98). IEEE
Computer Society, Vienna, Austria, 1998, pp. 300-308.

[66] F.Saltor, M. Oliva, A. Abelld,]. Samos, Building secure data warehouse schemas
from federated information systems, in: H. Bestougeff,]J.E. Dubois, B.
Thuraisingham (Eds.), Heterogeneous Inf. Exchange and Organizational
Hubs, Kluwer Academic Publisher, Dordrecht, The Netherlands, 2002, pp.
123-134.

[67] A. Rosenthal, E. Sciore, View security as the basic for data warehouse security,
in: 2nd International Workshop on Design and Management of Data
Warehouse (DMDW’00), Sweden, 2000, pp. 8.1-8.8.

[68] E. Weippl, O. Mangisengi, W. Essmayr, F. Lichtenberger, W. Winiwarter, An
authorization model for data warehouses and OLAP, in: Workshop on Security
in Distributed Data Warehousing, New Orleans, Louisiana, USA, 2001.

[69] L. Wang, S. Jajodia, D. Wijesekera, Securing OLAP data cubes against privacy
breaches, in: IEEE Symposium on Security and Privacy, Berkeley, California,
2004, pp. 161-178.

http://smartqvt.elibel.tm.fr/
http://projects.ikv.de/qvt
http://www.eclipse.org/m2m/atl/
http://www.w3c.org/TR

	Development of Secure XML Data Warehouses with QVT
	1 Introduction
	1.1 Motivation and starting point
	1.2 Contributions

	2 Background
	2.1 Query/View/Transformation language
	2.2 Framework for the development of secure XML DWs

	3 Using QVT for the automatic generation of secure XML DWs
	3.1 Secure MD PIM
	3.2 Secure XML DW PSM
	3.3 PIM to PSM transformations
	3.3.1 Transformation of the SecureDW
	3.3.2 Transformation of the Security Levels, Roles and Compartments
	3.3.3 Transformation of the User Profile
	3.3.4 Transformation of the Secure Information
	3.3.5 Transformation of the Secure Star Package
	3.3.6 Transformation of the Secure Facts
	3.3.7 Transformation of the Secure Dimensions
	3.3.8 Transformation of the Secure Bases
	3.3.9 Transformation of the Secure Constraints

	4 Case study
	4.1 MD data model
	4.2 Sample application of QVT relations

	5 Related work
	5.1 XML DWs modeling
	5.2 Secure integration into the design process
	5.3 Security and access control models for DWs

	6 Conclusions and future work
	Acknowledgements
	Appendix A List of acronyms
	Appendix B Generated XML Schema code of the Secure XML DW
	References

